| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ditgcl.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 2 |  | ditgcl.y | ⊢ ( 𝜑  →  𝑌  ∈  ℝ ) | 
						
							| 3 |  | ditgcl.a | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 4 |  | ditgcl.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑋 [,] 𝑌 ) ) | 
						
							| 5 |  | ditgcl.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐶  ∈  𝑉 ) | 
						
							| 6 |  | ditgcl.i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 7 |  | elicc2 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( 𝐴  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝑋  ≤  𝐴  ∧  𝐴  ≤  𝑌 ) ) ) | 
						
							| 8 | 1 2 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐴  ∈  ℝ  ∧  𝑋  ≤  𝐴  ∧  𝐴  ≤  𝑌 ) ) ) | 
						
							| 9 | 3 8 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝑋  ≤  𝐴  ∧  𝐴  ≤  𝑌 ) ) | 
						
							| 10 | 9 | simp1d | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 11 |  | elicc2 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  𝑌  ∈  ℝ )  →  ( 𝐵  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝑋  ≤  𝐵  ∧  𝐵  ≤  𝑌 ) ) ) | 
						
							| 12 | 1 2 11 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝑋 [,] 𝑌 )  ↔  ( 𝐵  ∈  ℝ  ∧  𝑋  ≤  𝐵  ∧  𝐵  ≤  𝑌 ) ) ) | 
						
							| 13 | 4 12 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ∧  𝑋  ≤  𝐵  ∧  𝐵  ≤  𝑌 ) ) | 
						
							| 14 | 13 | simp1d | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 16 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ℝ ) | 
						
							| 17 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 18 | 15 16 17 | ditgneg | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ⨜ [ 𝐵  →  𝐴 ] 𝐶  d 𝑥  =  - ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥 ) | 
						
							| 19 | 15 | ditgpos | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ⨜ [ 𝐴  →  𝐵 ] 𝐶  d 𝑥  =  ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥 ) | 
						
							| 20 | 19 | negeqd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  - ⨜ [ 𝐴  →  𝐵 ] 𝐶  d 𝑥  =  - ∫ ( 𝐴 (,) 𝐵 ) 𝐶  d 𝑥 ) | 
						
							| 21 | 18 20 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ⨜ [ 𝐵  →  𝐴 ] 𝐶  d 𝑥  =  - ⨜ [ 𝐴  →  𝐵 ] 𝐶  d 𝑥 ) | 
						
							| 22 | 1 | rexrd | ⊢ ( 𝜑  →  𝑋  ∈  ℝ* ) | 
						
							| 23 | 13 | simp2d | ⊢ ( 𝜑  →  𝑋  ≤  𝐵 ) | 
						
							| 24 |  | iooss1 | ⊢ ( ( 𝑋  ∈  ℝ*  ∧  𝑋  ≤  𝐵 )  →  ( 𝐵 (,) 𝐴 )  ⊆  ( 𝑋 (,) 𝐴 ) ) | 
						
							| 25 | 22 23 24 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵 (,) 𝐴 )  ⊆  ( 𝑋 (,) 𝐴 ) ) | 
						
							| 26 | 2 | rexrd | ⊢ ( 𝜑  →  𝑌  ∈  ℝ* ) | 
						
							| 27 | 9 | simp3d | ⊢ ( 𝜑  →  𝐴  ≤  𝑌 ) | 
						
							| 28 |  | iooss2 | ⊢ ( ( 𝑌  ∈  ℝ*  ∧  𝐴  ≤  𝑌 )  →  ( 𝑋 (,) 𝐴 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 29 | 26 27 28 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 (,) 𝐴 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 30 | 25 29 | sstrd | ⊢ ( 𝜑  →  ( 𝐵 (,) 𝐴 )  ⊆  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 31 | 30 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,) 𝐴 ) )  →  𝑥  ∈  ( 𝑋 (,) 𝑌 ) ) | 
						
							| 32 |  | iblmbf | ⊢ ( ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐶 )  ∈  𝐿1  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 33 | 6 32 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑋 (,) 𝑌 )  ↦  𝐶 )  ∈  MblFn ) | 
						
							| 34 | 33 5 | mbfmptcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑋 (,) 𝑌 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 35 | 31 34 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,) 𝐴 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 36 |  | ioombl | ⊢ ( 𝐵 (,) 𝐴 )  ∈  dom  vol | 
						
							| 37 | 36 | a1i | ⊢ ( 𝜑  →  ( 𝐵 (,) 𝐴 )  ∈  dom  vol ) | 
						
							| 38 | 30 37 5 6 | iblss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐵 (,) 𝐴 )  ↦  𝐶 )  ∈  𝐿1 ) | 
						
							| 39 | 35 38 | itgcl | ⊢ ( 𝜑  →  ∫ ( 𝐵 (,) 𝐴 ) 𝐶  d 𝑥  ∈  ℂ ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≤  𝐴 )  →  ∫ ( 𝐵 (,) 𝐴 ) 𝐶  d 𝑥  ∈  ℂ ) | 
						
							| 41 | 40 | negnegd | ⊢ ( ( 𝜑  ∧  𝐵  ≤  𝐴 )  →  - - ∫ ( 𝐵 (,) 𝐴 ) 𝐶  d 𝑥  =  ∫ ( 𝐵 (,) 𝐴 ) 𝐶  d 𝑥 ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  ≤  𝐴 )  →  𝐵  ≤  𝐴 ) | 
						
							| 43 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≤  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 44 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ≤  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 45 | 42 43 44 | ditgneg | ⊢ ( ( 𝜑  ∧  𝐵  ≤  𝐴 )  →  ⨜ [ 𝐴  →  𝐵 ] 𝐶  d 𝑥  =  - ∫ ( 𝐵 (,) 𝐴 ) 𝐶  d 𝑥 ) | 
						
							| 46 | 45 | negeqd | ⊢ ( ( 𝜑  ∧  𝐵  ≤  𝐴 )  →  - ⨜ [ 𝐴  →  𝐵 ] 𝐶  d 𝑥  =  - - ∫ ( 𝐵 (,) 𝐴 ) 𝐶  d 𝑥 ) | 
						
							| 47 | 42 | ditgpos | ⊢ ( ( 𝜑  ∧  𝐵  ≤  𝐴 )  →  ⨜ [ 𝐵  →  𝐴 ] 𝐶  d 𝑥  =  ∫ ( 𝐵 (,) 𝐴 ) 𝐶  d 𝑥 ) | 
						
							| 48 | 41 46 47 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝐵  ≤  𝐴 )  →  ⨜ [ 𝐵  →  𝐴 ] 𝐶  d 𝑥  =  - ⨜ [ 𝐴  →  𝐵 ] 𝐶  d 𝑥 ) | 
						
							| 49 | 10 14 21 48 | lecasei | ⊢ ( 𝜑  →  ⨜ [ 𝐵  →  𝐴 ] 𝐶  d 𝑥  =  - ⨜ [ 𝐴  →  𝐵 ] 𝐶  d 𝑥 ) |