Metamath Proof Explorer


Theorem div0

Description: Division into zero is zero. (Contributed by NM, 14-Mar-2005) (Proof shortened by SN, 9-Jul-2025)

Ref Expression
Assertion div0 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 0cn 0 ∈ ℂ
2 eqid 0 = 0
3 diveq0 ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 0 / 𝐴 ) = 0 ↔ 0 = 0 ) )
4 2 3 mpbiri ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 )
5 1 4 mp3an1 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 )