Metamath Proof Explorer


Theorem div0

Description: Division into zero is zero. (Contributed by NM, 14-Mar-2005)

Ref Expression
Assertion div0 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ )
2 1 mul01d ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · 0 ) = 0 )
3 0cn 0 ∈ ℂ
4 divmul ( ( 0 ∈ ℂ ∧ 0 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 0 / 𝐴 ) = 0 ↔ ( 𝐴 · 0 ) = 0 ) )
5 3 3 4 mp3an12 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 0 / 𝐴 ) = 0 ↔ ( 𝐴 · 0 ) = 0 ) )
6 2 5 mpbird ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 )