Metamath Proof Explorer


Theorem div0d

Description: Division into zero is zero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 ( 𝜑𝐴 ∈ ℂ )
reccld.2 ( 𝜑𝐴 ≠ 0 )
Assertion div0d ( 𝜑 → ( 0 / 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 div1d.1 ( 𝜑𝐴 ∈ ℂ )
2 reccld.2 ( 𝜑𝐴 ≠ 0 )
3 div0 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 )
4 1 2 3 syl2anc ( 𝜑 → ( 0 / 𝐴 ) = 0 )