Metamath Proof Explorer


Theorem div0i

Description: Division into zero is zero. (Contributed by NM, 12-Aug-1999)

Ref Expression
Hypotheses divclz.1 𝐴 ∈ ℂ
reccl.2 𝐴 ≠ 0
Assertion div0i ( 0 / 𝐴 ) = 0

Proof

Step Hyp Ref Expression
1 divclz.1 𝐴 ∈ ℂ
2 reccl.2 𝐴 ≠ 0
3 div0 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 / 𝐴 ) = 0 )
4 1 2 3 mp2an ( 0 / 𝐴 ) = 0