Metamath Proof Explorer


Theorem div1

Description: A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion div1 ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 mulid2 ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 )
2 ax-1cn 1 ∈ ℂ
3 ax-1ne0 1 ≠ 0
4 2 3 pm3.2i ( 1 ∈ ℂ ∧ 1 ≠ 0 )
5 divmul ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) → ( ( 𝐴 / 1 ) = 𝐴 ↔ ( 1 · 𝐴 ) = 𝐴 ) )
6 4 5 mp3an3 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 / 1 ) = 𝐴 ↔ ( 1 · 𝐴 ) = 𝐴 ) )
7 6 anidms ( 𝐴 ∈ ℂ → ( ( 𝐴 / 1 ) = 𝐴 ↔ ( 1 · 𝐴 ) = 𝐴 ) )
8 1 7 mpbird ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 )