Description: A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 4 | 2 3 | pm3.2i | ⊢ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) |
| 5 | divmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) → ( ( 𝐴 / 1 ) = 𝐴 ↔ ( 1 · 𝐴 ) = 𝐴 ) ) | |
| 6 | 4 5 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 / 1 ) = 𝐴 ↔ ( 1 · 𝐴 ) = 𝐴 ) ) |
| 7 | 6 | anidms | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 1 ) = 𝐴 ↔ ( 1 · 𝐴 ) = 𝐴 ) ) |
| 8 | 1 7 | mpbird | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 ) |