Step |
Hyp |
Ref |
Expression |
1 |
|
divcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
2 |
1
|
3expb |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
3 |
2
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
4 |
|
divmul3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 / 𝐶 ) ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = ( ( 𝐵 / 𝐶 ) · 𝐶 ) ) ) |
5 |
3 4
|
syld3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = ( ( 𝐵 / 𝐶 ) · 𝐶 ) ) ) |
6 |
|
divcan1 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐵 / 𝐶 ) · 𝐶 ) = 𝐵 ) |
7 |
6
|
3expb |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐵 / 𝐶 ) · 𝐶 ) = 𝐵 ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐵 / 𝐶 ) · 𝐶 ) = 𝐵 ) |
9 |
8
|
eqeq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 = ( ( 𝐵 / 𝐶 ) · 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
10 |
5 9
|
bitrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |