| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | simp3l | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 3 |  | simp3r | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  𝐶  ≠  0 ) | 
						
							| 4 |  | divcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  𝐶  ≠  0 )  →  ( 𝐴  /  𝐶 )  ∈  ℂ ) | 
						
							| 5 | 1 2 3 4 | syl3anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  ( 𝐴  /  𝐶 )  ∈  ℂ ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 7 |  | divcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  𝐶  ≠  0 )  →  ( 𝐵  /  𝐶 )  ∈  ℂ ) | 
						
							| 8 | 6 2 3 7 | syl3anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  ( 𝐵  /  𝐶 )  ∈  ℂ ) | 
						
							| 9 | 5 8 2 3 | mulcand | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  ( ( 𝐶  ·  ( 𝐴  /  𝐶 ) )  =  ( 𝐶  ·  ( 𝐵  /  𝐶 ) )  ↔  ( 𝐴  /  𝐶 )  =  ( 𝐵  /  𝐶 ) ) ) | 
						
							| 10 |  | divcan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  𝐶  ≠  0 )  →  ( 𝐶  ·  ( 𝐴  /  𝐶 ) )  =  𝐴 ) | 
						
							| 11 | 1 2 3 10 | syl3anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  ( 𝐶  ·  ( 𝐴  /  𝐶 ) )  =  𝐴 ) | 
						
							| 12 |  | divcan2 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  𝐶  ≠  0 )  →  ( 𝐶  ·  ( 𝐵  /  𝐶 ) )  =  𝐵 ) | 
						
							| 13 | 6 2 3 12 | syl3anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  ( 𝐶  ·  ( 𝐵  /  𝐶 ) )  =  𝐵 ) | 
						
							| 14 | 11 13 | eqeq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  ( ( 𝐶  ·  ( 𝐴  /  𝐶 ) )  =  ( 𝐶  ·  ( 𝐵  /  𝐶 ) )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 15 | 9 14 | bitr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  ( ( 𝐴  /  𝐶 )  =  ( 𝐵  /  𝐶 )  ↔  𝐴  =  𝐵 ) ) |