Description: One-to-one relationship for division. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
divmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
divassd.4 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | ||
div11d.5 | ⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ) | ||
Assertion | div11d | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
3 | divmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
4 | divassd.4 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | |
5 | div11d.5 | ⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ) | |
6 | div11 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = 𝐵 ) ) | |
7 | 1 2 3 4 6 | syl112anc | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
8 | 5 7 | mpbid | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |