Metamath Proof Explorer
		
		
		
		Description:  One-to-one relationship for division.  (Contributed by NM, 20-Aug-2001)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | divmulz.3 | ⊢ 𝐶  ∈  ℂ | 
					
						|  |  | divass.4 | ⊢ 𝐶  ≠  0 | 
				
					|  | Assertion | div11i | ⊢  ( ( 𝐴  /  𝐶 )  =  ( 𝐵  /  𝐶 )  ↔  𝐴  =  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | divmulz.3 | ⊢ 𝐶  ∈  ℂ | 
						
							| 4 |  | divass.4 | ⊢ 𝐶  ≠  0 | 
						
							| 5 | 3 4 | pm3.2i | ⊢ ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) | 
						
							| 6 |  | div11 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) )  →  ( ( 𝐴  /  𝐶 )  =  ( 𝐵  /  𝐶 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 7 | 1 2 5 6 | mp3an | ⊢ ( ( 𝐴  /  𝐶 )  =  ( 𝐵  /  𝐶 )  ↔  𝐴  =  𝐵 ) |