| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  ·  𝐶 )  =  ( 𝐶  ·  𝐴 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  ·  𝐶 )  /  𝐵 )  =  ( ( 𝐶  ·  𝐴 )  /  𝐵 ) ) | 
						
							| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  ·  𝐶 )  /  𝐵 )  =  ( ( 𝐶  ·  𝐴 )  /  𝐵 ) ) | 
						
							| 4 |  | div23 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( 𝐴  ·  𝐶 )  /  𝐵 )  =  ( ( 𝐴  /  𝐵 )  ·  𝐶 ) ) | 
						
							| 5 | 4 | 3com23 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  ·  𝐶 )  /  𝐵 )  =  ( ( 𝐴  /  𝐵 )  ·  𝐶 ) ) | 
						
							| 6 |  | div23 | ⊢ ( ( 𝐶  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( 𝐶  ·  𝐴 )  /  𝐵 )  =  ( ( 𝐶  /  𝐵 )  ·  𝐴 ) ) | 
						
							| 7 | 6 | 3coml | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐶  ·  𝐴 )  /  𝐵 )  =  ( ( 𝐶  /  𝐵 )  ·  𝐴 ) ) | 
						
							| 8 | 3 5 7 | 3eqtr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  /  𝐵 )  ·  𝐶 )  =  ( ( 𝐶  /  𝐵 )  ·  𝐴 ) ) |