Metamath Proof Explorer


Theorem div23i

Description: A commutative/associative law for division. (Contributed by NM, 3-Sep-1999)

Ref Expression
Hypotheses divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divmulz.3 𝐶 ∈ ℂ
divass.4 𝐶 ≠ 0
Assertion div23i ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) · 𝐵 )

Proof

Step Hyp Ref Expression
1 divclz.1 𝐴 ∈ ℂ
2 divclz.2 𝐵 ∈ ℂ
3 divmulz.3 𝐶 ∈ ℂ
4 divass.4 𝐶 ≠ 0
5 3 4 pm3.2i ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 )
6 div23 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) · 𝐵 ) )
7 1 2 5 6 mp3an ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) · 𝐵 )