Step |
Hyp |
Ref |
Expression |
1 |
|
negcl |
⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - 𝐵 ∈ ℂ ) |
3 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ ) |
4 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
5 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) |
6 |
|
div12 |
⊢ ( ( - 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 𝐵 · ( 𝐴 / 𝐵 ) ) = ( 𝐴 · ( - 𝐵 / 𝐵 ) ) ) |
7 |
2 3 4 5 6
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐵 · ( 𝐴 / 𝐵 ) ) = ( 𝐴 · ( - 𝐵 / 𝐵 ) ) ) |
8 |
|
divneg |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐵 / 𝐵 ) = ( - 𝐵 / 𝐵 ) ) |
9 |
4 8
|
syld3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐵 / 𝐵 ) = ( - 𝐵 / 𝐵 ) ) |
10 |
|
divid |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 / 𝐵 ) = 1 ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 / 𝐵 ) = 1 ) |
12 |
11
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐵 / 𝐵 ) = - 1 ) |
13 |
9 12
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐵 / 𝐵 ) = - 1 ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · ( - 𝐵 / 𝐵 ) ) = ( 𝐴 · - 1 ) ) |
15 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
16 |
15
|
negcli |
⊢ - 1 ∈ ℂ |
17 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 1 ∈ ℂ ) → ( 𝐴 · - 1 ) = ( - 1 · 𝐴 ) ) |
18 |
16 17
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · - 1 ) = ( - 1 · 𝐴 ) ) |
19 |
|
mulm1 |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) |
20 |
18 19
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · - 1 ) = - 𝐴 ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · - 1 ) = - 𝐴 ) |
22 |
14 21
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · ( - 𝐵 / 𝐵 ) ) = - 𝐴 ) |
23 |
7 22
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐵 · ( 𝐴 / 𝐵 ) ) = - 𝐴 ) |
24 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
25 |
24
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - 𝐴 ∈ ℂ ) |
26 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
27 |
|
negeq0 |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 = 0 ↔ - 𝐵 = 0 ) ) |
28 |
27
|
necon3bid |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ≠ 0 ↔ - 𝐵 ≠ 0 ) ) |
29 |
28
|
biimpa |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - 𝐵 ≠ 0 ) |
30 |
29
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - 𝐵 ≠ 0 ) |
31 |
|
divmul |
⊢ ( ( - 𝐴 ∈ ℂ ∧ ( 𝐴 / 𝐵 ) ∈ ℂ ∧ ( - 𝐵 ∈ ℂ ∧ - 𝐵 ≠ 0 ) ) → ( ( - 𝐴 / - 𝐵 ) = ( 𝐴 / 𝐵 ) ↔ ( - 𝐵 · ( 𝐴 / 𝐵 ) ) = - 𝐴 ) ) |
32 |
25 26 2 30 31
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( - 𝐴 / - 𝐵 ) = ( 𝐴 / 𝐵 ) ↔ ( - 𝐵 · ( 𝐴 / 𝐵 ) ) = - 𝐴 ) ) |
33 |
23 32
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 / - 𝐵 ) = ( 𝐴 / 𝐵 ) ) |