Metamath Proof Explorer


Theorem div2sub

Description: Swap the order of subtraction in a division. (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion div2sub ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷 ) ) → ( ( 𝐴𝐵 ) / ( 𝐶𝐷 ) ) = ( ( 𝐵𝐴 ) / ( 𝐷𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 subcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝐵 ) ∈ ℂ )
2 subcl ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶𝐷 ) ∈ ℂ )
3 2 3adant3 ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷 ) → ( 𝐶𝐷 ) ∈ ℂ )
4 subeq0 ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 𝐶𝐷 ) = 0 ↔ 𝐶 = 𝐷 ) )
5 4 necon3bid ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 𝐶𝐷 ) ≠ 0 ↔ 𝐶𝐷 ) )
6 5 biimp3ar ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷 ) → ( 𝐶𝐷 ) ≠ 0 )
7 3 6 jca ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷 ) → ( ( 𝐶𝐷 ) ∈ ℂ ∧ ( 𝐶𝐷 ) ≠ 0 ) )
8 div2neg ( ( ( 𝐴𝐵 ) ∈ ℂ ∧ ( 𝐶𝐷 ) ∈ ℂ ∧ ( 𝐶𝐷 ) ≠ 0 ) → ( - ( 𝐴𝐵 ) / - ( 𝐶𝐷 ) ) = ( ( 𝐴𝐵 ) / ( 𝐶𝐷 ) ) )
9 8 3expb ( ( ( 𝐴𝐵 ) ∈ ℂ ∧ ( ( 𝐶𝐷 ) ∈ ℂ ∧ ( 𝐶𝐷 ) ≠ 0 ) ) → ( - ( 𝐴𝐵 ) / - ( 𝐶𝐷 ) ) = ( ( 𝐴𝐵 ) / ( 𝐶𝐷 ) ) )
10 1 7 9 syl2an ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷 ) ) → ( - ( 𝐴𝐵 ) / - ( 𝐶𝐷 ) ) = ( ( 𝐴𝐵 ) / ( 𝐶𝐷 ) ) )
11 negsubdi2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴𝐵 ) = ( 𝐵𝐴 ) )
12 negsubdi2 ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → - ( 𝐶𝐷 ) = ( 𝐷𝐶 ) )
13 12 3adant3 ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷 ) → - ( 𝐶𝐷 ) = ( 𝐷𝐶 ) )
14 11 13 oveqan12d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷 ) ) → ( - ( 𝐴𝐵 ) / - ( 𝐶𝐷 ) ) = ( ( 𝐵𝐴 ) / ( 𝐷𝐶 ) ) )
15 10 14 eqtr3d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶𝐷 ) ) → ( ( 𝐴𝐵 ) / ( 𝐶𝐷 ) ) = ( ( 𝐵𝐴 ) / ( 𝐷𝐶 ) ) )