Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
div2subd
Metamath Proof Explorer
Description: Swap subtrahend and minuend inside the numerator and denominator of a
fraction. Deduction form of div2sub . (Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
div2subd.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
div2subd.2
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
div2subd.3
⊢ ( 𝜑 → 𝐶 ∈ ℂ )
div2subd.4
⊢ ( 𝜑 → 𝐷 ∈ ℂ )
div2subd.5
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 )
Assertion
div2subd
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐷 − 𝐶 ) ) )
Proof
Step
Hyp
Ref
Expression
1
div2subd.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
2
div2subd.2
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
3
div2subd.3
⊢ ( 𝜑 → 𝐶 ∈ ℂ )
4
div2subd.4
⊢ ( 𝜑 → 𝐷 ∈ ℂ )
5
div2subd.5
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 )
6
div2sub
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐷 − 𝐶 ) ) )
7
1 2 3 4 5 6
syl23anc
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) / ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐷 − 𝐶 ) ) )