Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div32 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 / 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐶 / 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | div23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐶 ) / 𝐵 ) = ( ( 𝐴 / 𝐵 ) · 𝐶 ) ) | |
| 2 | divass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐶 ) / 𝐵 ) = ( 𝐴 · ( 𝐶 / 𝐵 ) ) ) | |
| 3 | 1 2 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐶 / 𝐵 ) ) ) |
| 4 | 3 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 / 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐶 / 𝐵 ) ) ) |