| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
| 2 |
1
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
| 3 |
2
|
adantrl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
| 4 |
|
mulcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 5 |
4
|
adantrr |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 6 |
5
|
ad2ant2lr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 7 |
|
mulcl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 · 𝐷 ) ∈ ℂ ) |
| 8 |
7
|
ad2ant2r |
⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 · 𝐷 ) ∈ ℂ ) |
| 9 |
|
mulne0 |
⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 · 𝐷 ) ≠ 0 ) |
| 10 |
8 9
|
jca |
⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐶 · 𝐷 ) ∈ ℂ ∧ ( 𝐶 · 𝐷 ) ≠ 0 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐶 · 𝐷 ) ∈ ℂ ∧ ( 𝐶 · 𝐷 ) ≠ 0 ) ) |
| 12 |
|
divdir |
⊢ ( ( ( 𝐴 · 𝐷 ) ∈ ℂ ∧ ( 𝐵 · 𝐶 ) ∈ ℂ ∧ ( ( 𝐶 · 𝐷 ) ∈ ℂ ∧ ( 𝐶 · 𝐷 ) ≠ 0 ) ) → ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) / ( 𝐶 · 𝐷 ) ) = ( ( ( 𝐴 · 𝐷 ) / ( 𝐶 · 𝐷 ) ) + ( ( 𝐵 · 𝐶 ) / ( 𝐶 · 𝐷 ) ) ) ) |
| 13 |
3 6 11 12
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) / ( 𝐶 · 𝐷 ) ) = ( ( ( 𝐴 · 𝐷 ) / ( 𝐶 · 𝐷 ) ) + ( ( 𝐵 · 𝐶 ) / ( 𝐶 · 𝐷 ) ) ) ) |
| 14 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐴 ∈ ℂ ) |
| 15 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 16 |
15
|
simpld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐷 ∈ ℂ ) |
| 17 |
14 16
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐴 · 𝐷 ) = ( 𝐷 · 𝐴 ) ) |
| 18 |
|
simprll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐶 ∈ ℂ ) |
| 19 |
18 16
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐶 · 𝐷 ) = ( 𝐷 · 𝐶 ) ) |
| 20 |
17 19
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 · 𝐷 ) / ( 𝐶 · 𝐷 ) ) = ( ( 𝐷 · 𝐴 ) / ( 𝐷 · 𝐶 ) ) ) |
| 21 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) |
| 22 |
|
divcan5 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 · 𝐴 ) / ( 𝐷 · 𝐶 ) ) = ( 𝐴 / 𝐶 ) ) |
| 23 |
14 21 15 22
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐷 · 𝐴 ) / ( 𝐷 · 𝐶 ) ) = ( 𝐴 / 𝐶 ) ) |
| 24 |
20 23
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 · 𝐷 ) / ( 𝐶 · 𝐷 ) ) = ( 𝐴 / 𝐶 ) ) |
| 25 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → 𝐵 ∈ ℂ ) |
| 26 |
25 18
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 27 |
26
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐵 · 𝐶 ) / ( 𝐶 · 𝐷 ) ) = ( ( 𝐶 · 𝐵 ) / ( 𝐶 · 𝐷 ) ) ) |
| 28 |
|
divcan5 |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝐵 ) / ( 𝐶 · 𝐷 ) ) = ( 𝐵 / 𝐷 ) ) |
| 29 |
25 15 21 28
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐶 · 𝐵 ) / ( 𝐶 · 𝐷 ) ) = ( 𝐵 / 𝐷 ) ) |
| 30 |
27 29
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐵 · 𝐶 ) / ( 𝐶 · 𝐷 ) ) = ( 𝐵 / 𝐷 ) ) |
| 31 |
24 30
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( ( 𝐴 · 𝐷 ) / ( 𝐶 · 𝐷 ) ) + ( ( 𝐵 · 𝐶 ) / ( 𝐶 · 𝐷 ) ) ) = ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐷 ) ) ) |
| 32 |
13 31
|
eqtr2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐷 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) / ( 𝐶 · 𝐷 ) ) ) |