| Step | Hyp | Ref | Expression | 
						
							| 1 |  | div1d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | divcld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | divmuld.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 4 |  | divmuldivd.4 | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 5 |  | divmuldivd.5 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 6 |  | divmuldivd.6 | ⊢ ( 𝜑  →  𝐷  ≠  0 ) | 
						
							| 7 | 2 5 | jca | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) ) | 
						
							| 8 | 4 6 | jca | ⊢ ( 𝜑  →  ( 𝐷  ∈  ℂ  ∧  𝐷  ≠  0 ) ) | 
						
							| 9 |  | divadddiv | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  ∧  ( 𝐷  ∈  ℂ  ∧  𝐷  ≠  0 ) ) )  →  ( ( 𝐴  /  𝐵 )  +  ( 𝐶  /  𝐷 ) )  =  ( ( ( 𝐴  ·  𝐷 )  +  ( 𝐶  ·  𝐵 ) )  /  ( 𝐵  ·  𝐷 ) ) ) | 
						
							| 10 | 1 3 7 8 9 | syl22anc | ⊢ ( 𝜑  →  ( ( 𝐴  /  𝐵 )  +  ( 𝐶  /  𝐷 ) )  =  ( ( ( 𝐴  ·  𝐷 )  +  ( 𝐶  ·  𝐵 ) )  /  ( 𝐵  ·  𝐷 ) ) ) |