| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnz | ⊢ ( 𝐷  ∈  ℕ  →  𝐷  ∈  ℤ ) | 
						
							| 2 |  | nnne0 | ⊢ ( 𝐷  ∈  ℕ  →  𝐷  ≠  0 ) | 
						
							| 3 | 1 2 | jca | ⊢ ( 𝐷  ∈  ℕ  →  ( 𝐷  ∈  ℤ  ∧  𝐷  ≠  0 ) ) | 
						
							| 4 |  | divalg | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐷  ∈  ℤ  ∧  𝐷  ≠  0 )  →  ∃! 𝑟  ∈  ℤ ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑟  ∧  𝑟  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) ) ) | 
						
							| 5 |  | divalgb | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐷  ∈  ℤ  ∧  𝐷  ≠  0 )  →  ( ∃! 𝑟  ∈  ℤ ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑟  ∧  𝑟  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) )  ↔  ∃! 𝑟  ∈  ℕ0 ( 𝑟  <  ( abs ‘ 𝐷 )  ∧  𝐷  ∥  ( 𝑁  −  𝑟 ) ) ) ) | 
						
							| 6 | 4 5 | mpbid | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐷  ∈  ℤ  ∧  𝐷  ≠  0 )  →  ∃! 𝑟  ∈  ℕ0 ( 𝑟  <  ( abs ‘ 𝐷 )  ∧  𝐷  ∥  ( 𝑁  −  𝑟 ) ) ) | 
						
							| 7 | 6 | 3expb | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝐷  ∈  ℤ  ∧  𝐷  ≠  0 ) )  →  ∃! 𝑟  ∈  ℕ0 ( 𝑟  <  ( abs ‘ 𝐷 )  ∧  𝐷  ∥  ( 𝑁  −  𝑟 ) ) ) | 
						
							| 8 | 3 7 | sylan2 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐷  ∈  ℕ )  →  ∃! 𝑟  ∈  ℕ0 ( 𝑟  <  ( abs ‘ 𝐷 )  ∧  𝐷  ∥  ( 𝑁  −  𝑟 ) ) ) | 
						
							| 9 |  | nnre | ⊢ ( 𝐷  ∈  ℕ  →  𝐷  ∈  ℝ ) | 
						
							| 10 |  | nnnn0 | ⊢ ( 𝐷  ∈  ℕ  →  𝐷  ∈  ℕ0 ) | 
						
							| 11 | 10 | nn0ge0d | ⊢ ( 𝐷  ∈  ℕ  →  0  ≤  𝐷 ) | 
						
							| 12 | 9 11 | absidd | ⊢ ( 𝐷  ∈  ℕ  →  ( abs ‘ 𝐷 )  =  𝐷 ) | 
						
							| 13 | 12 | breq2d | ⊢ ( 𝐷  ∈  ℕ  →  ( 𝑟  <  ( abs ‘ 𝐷 )  ↔  𝑟  <  𝐷 ) ) | 
						
							| 14 | 13 | anbi1d | ⊢ ( 𝐷  ∈  ℕ  →  ( ( 𝑟  <  ( abs ‘ 𝐷 )  ∧  𝐷  ∥  ( 𝑁  −  𝑟 ) )  ↔  ( 𝑟  <  𝐷  ∧  𝐷  ∥  ( 𝑁  −  𝑟 ) ) ) ) | 
						
							| 15 | 14 | reubidv | ⊢ ( 𝐷  ∈  ℕ  →  ( ∃! 𝑟  ∈  ℕ0 ( 𝑟  <  ( abs ‘ 𝐷 )  ∧  𝐷  ∥  ( 𝑁  −  𝑟 ) )  ↔  ∃! 𝑟  ∈  ℕ0 ( 𝑟  <  𝐷  ∧  𝐷  ∥  ( 𝑁  −  𝑟 ) ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐷  ∈  ℕ )  →  ( ∃! 𝑟  ∈  ℕ0 ( 𝑟  <  ( abs ‘ 𝐷 )  ∧  𝐷  ∥  ( 𝑁  −  𝑟 ) )  ↔  ∃! 𝑟  ∈  ℕ0 ( 𝑟  <  𝐷  ∧  𝐷  ∥  ( 𝑁  −  𝑟 ) ) ) ) | 
						
							| 17 | 8 16 | mpbid | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐷  ∈  ℕ )  →  ∃! 𝑟  ∈  ℕ0 ( 𝑟  <  𝐷  ∧  𝐷  ∥  ( 𝑁  −  𝑟 ) ) ) |