Step |
Hyp |
Ref |
Expression |
1 |
|
divalglem0.1 |
⊢ 𝑁 ∈ ℤ |
2 |
|
divalglem0.2 |
⊢ 𝐷 ∈ ℤ |
3 |
|
divalglem1.3 |
⊢ 𝐷 ≠ 0 |
4 |
1
|
zrei |
⊢ 𝑁 ∈ ℝ |
5 |
|
0re |
⊢ 0 ∈ ℝ |
6 |
4 5
|
letrii |
⊢ ( 𝑁 ≤ 0 ∨ 0 ≤ 𝑁 ) |
7 |
|
nnabscl |
⊢ ( ( 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ) → ( abs ‘ 𝐷 ) ∈ ℕ ) |
8 |
2 3 7
|
mp2an |
⊢ ( abs ‘ 𝐷 ) ∈ ℕ |
9 |
|
nnge1 |
⊢ ( ( abs ‘ 𝐷 ) ∈ ℕ → 1 ≤ ( abs ‘ 𝐷 ) ) |
10 |
8 9
|
ax-mp |
⊢ 1 ≤ ( abs ‘ 𝐷 ) |
11 |
|
le0neg1 |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 ≤ 0 ↔ 0 ≤ - 𝑁 ) ) |
12 |
4 11
|
ax-mp |
⊢ ( 𝑁 ≤ 0 ↔ 0 ≤ - 𝑁 ) |
13 |
4
|
renegcli |
⊢ - 𝑁 ∈ ℝ |
14 |
2
|
zrei |
⊢ 𝐷 ∈ ℝ |
15 |
14
|
recni |
⊢ 𝐷 ∈ ℂ |
16 |
15
|
abscli |
⊢ ( abs ‘ 𝐷 ) ∈ ℝ |
17 |
|
lemulge11 |
⊢ ( ( ( - 𝑁 ∈ ℝ ∧ ( abs ‘ 𝐷 ) ∈ ℝ ) ∧ ( 0 ≤ - 𝑁 ∧ 1 ≤ ( abs ‘ 𝐷 ) ) ) → - 𝑁 ≤ ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) |
18 |
13 16 17
|
mpanl12 |
⊢ ( ( 0 ≤ - 𝑁 ∧ 1 ≤ ( abs ‘ 𝐷 ) ) → - 𝑁 ≤ ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) |
19 |
12 18
|
sylanb |
⊢ ( ( 𝑁 ≤ 0 ∧ 1 ≤ ( abs ‘ 𝐷 ) ) → - 𝑁 ≤ ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) |
20 |
10 19
|
mpan2 |
⊢ ( 𝑁 ≤ 0 → - 𝑁 ≤ ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) |
21 |
4
|
recni |
⊢ 𝑁 ∈ ℂ |
22 |
21 15
|
absmuli |
⊢ ( abs ‘ ( 𝑁 · 𝐷 ) ) = ( ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) |
23 |
4
|
absnidi |
⊢ ( 𝑁 ≤ 0 → ( abs ‘ 𝑁 ) = - 𝑁 ) |
24 |
23
|
oveq1d |
⊢ ( 𝑁 ≤ 0 → ( ( abs ‘ 𝑁 ) · ( abs ‘ 𝐷 ) ) = ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) |
25 |
22 24
|
eqtrid |
⊢ ( 𝑁 ≤ 0 → ( abs ‘ ( 𝑁 · 𝐷 ) ) = ( - 𝑁 · ( abs ‘ 𝐷 ) ) ) |
26 |
20 25
|
breqtrrd |
⊢ ( 𝑁 ≤ 0 → - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
27 |
|
le0neg2 |
⊢ ( 𝑁 ∈ ℝ → ( 0 ≤ 𝑁 ↔ - 𝑁 ≤ 0 ) ) |
28 |
4 27
|
ax-mp |
⊢ ( 0 ≤ 𝑁 ↔ - 𝑁 ≤ 0 ) |
29 |
4 14
|
remulcli |
⊢ ( 𝑁 · 𝐷 ) ∈ ℝ |
30 |
29
|
recni |
⊢ ( 𝑁 · 𝐷 ) ∈ ℂ |
31 |
30
|
absge0i |
⊢ 0 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) |
32 |
30
|
abscli |
⊢ ( abs ‘ ( 𝑁 · 𝐷 ) ) ∈ ℝ |
33 |
13 5 32
|
letri |
⊢ ( ( - 𝑁 ≤ 0 ∧ 0 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) → - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
34 |
31 33
|
mpan2 |
⊢ ( - 𝑁 ≤ 0 → - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
35 |
28 34
|
sylbi |
⊢ ( 0 ≤ 𝑁 → - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
36 |
26 35
|
jaoi |
⊢ ( ( 𝑁 ≤ 0 ∨ 0 ≤ 𝑁 ) → - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
37 |
6 36
|
ax-mp |
⊢ - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) |
38 |
|
df-neg |
⊢ - 𝑁 = ( 0 − 𝑁 ) |
39 |
38
|
breq1i |
⊢ ( - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ↔ ( 0 − 𝑁 ) ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |
40 |
5 4 32
|
lesubadd2i |
⊢ ( ( 0 − 𝑁 ) ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ↔ 0 ≤ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) |
41 |
39 40
|
bitri |
⊢ ( - 𝑁 ≤ ( abs ‘ ( 𝑁 · 𝐷 ) ) ↔ 0 ≤ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) ) |
42 |
37 41
|
mpbi |
⊢ 0 ≤ ( 𝑁 + ( abs ‘ ( 𝑁 · 𝐷 ) ) ) |