| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divalglem8.1 | ⊢ 𝑁  ∈  ℤ | 
						
							| 2 |  | divalglem8.2 | ⊢ 𝐷  ∈  ℤ | 
						
							| 3 |  | divalglem8.3 | ⊢ 𝐷  ≠  0 | 
						
							| 4 |  | divalglem8.4 | ⊢ 𝑆  =  { 𝑟  ∈  ℕ0  ∣  𝐷  ∥  ( 𝑁  −  𝑟 ) } | 
						
							| 5 |  | eqid | ⊢ inf ( 𝑆 ,  ℝ ,   <  )  =  inf ( 𝑆 ,  ℝ ,   <  ) | 
						
							| 6 | 1 2 3 4 5 | divalglem9 | ⊢ ∃! 𝑥  ∈  𝑆 𝑥  <  ( abs ‘ 𝐷 ) | 
						
							| 7 |  | elnn0z | ⊢ ( 𝑥  ∈  ℕ0  ↔  ( 𝑥  ∈  ℤ  ∧  0  ≤  𝑥 ) ) | 
						
							| 8 | 7 | anbi2i | ⊢ ( ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑥  ∈  ℕ0 )  ↔  ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  ( 𝑥  ∈  ℤ  ∧  0  ≤  𝑥 ) ) ) | 
						
							| 9 |  | an12 | ⊢ ( ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  ( 𝑥  ∈  ℤ  ∧  0  ≤  𝑥 ) )  ↔  ( 𝑥  ∈  ℤ  ∧  ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  0  ≤  𝑥 ) ) ) | 
						
							| 10 |  | ancom | ⊢ ( ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  0  ≤  𝑥 )  ↔  ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) ) ) | 
						
							| 11 | 10 | anbi2i | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  0  ≤  𝑥 ) )  ↔  ( 𝑥  ∈  ℤ  ∧  ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) ) ) ) | 
						
							| 12 | 9 11 | bitri | ⊢ ( ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  ( 𝑥  ∈  ℤ  ∧  0  ≤  𝑥 ) )  ↔  ( 𝑥  ∈  ℤ  ∧  ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) ) ) ) | 
						
							| 13 | 8 12 | bitri | ⊢ ( ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑥  ∈  ℕ0 )  ↔  ( 𝑥  ∈  ℤ  ∧  ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) ) ) ) | 
						
							| 14 | 13 | anbi1i | ⊢ ( ( ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑥  ∈  ℕ0 )  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ( ( 𝑥  ∈  ℤ  ∧  ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) ) )  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) | 
						
							| 15 |  | anass | ⊢ ( ( ( 𝑥  ∈  ℤ  ∧  ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) ) )  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ( 𝑥  ∈  ℤ  ∧  ( ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) ) | 
						
							| 16 | 14 15 | bitri | ⊢ ( ( ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑥  ∈  ℕ0 )  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ( 𝑥  ∈  ℤ  ∧  ( ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑟  =  𝑥  →  ( ( 𝑞  ·  𝐷 )  +  𝑟 )  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) | 
						
							| 18 | 17 | eqeq2d | ⊢ ( 𝑟  =  𝑥  →  ( 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 )  ↔  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑟  =  𝑥  →  ( ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 )  ↔  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) | 
						
							| 20 | 1 2 3 4 | divalglem4 | ⊢ 𝑆  =  { 𝑟  ∈  ℕ0  ∣  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) } | 
						
							| 21 | 19 20 | elrab2 | ⊢ ( 𝑥  ∈  𝑆  ↔  ( 𝑥  ∈  ℕ0  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) | 
						
							| 22 | 21 | anbi2i | ⊢ ( ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑥  ∈  𝑆 )  ↔  ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  ( 𝑥  ∈  ℕ0  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) ) | 
						
							| 23 |  | ancom | ⊢ ( ( 𝑥  ∈  𝑆  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ↔  ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑥  ∈  𝑆 ) ) | 
						
							| 24 |  | anass | ⊢ ( ( ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑥  ∈  ℕ0 )  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  ( 𝑥  ∈  ℕ0  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) ) | 
						
							| 25 | 22 23 24 | 3bitr4i | ⊢ ( ( 𝑥  ∈  𝑆  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ↔  ( ( 𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑥  ∈  ℕ0 )  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) | 
						
							| 26 |  | df-3an | ⊢ ( ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ( ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) | 
						
							| 27 | 26 | rexbii | ⊢ ( ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ∃ 𝑞  ∈  ℤ ( ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) | 
						
							| 28 |  | r19.42v | ⊢ ( ∃ 𝑞  ∈  ℤ ( ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ( ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) | 
						
							| 29 | 27 28 | bitri | ⊢ ( ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ( ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) | 
						
							| 30 | 29 | anbi2i | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) )  ↔  ( 𝑥  ∈  ℤ  ∧  ( ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) ) | 
						
							| 31 | 16 25 30 | 3bitr4i | ⊢ ( ( 𝑥  ∈  𝑆  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ↔  ( 𝑥  ∈  ℤ  ∧  ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) ) | 
						
							| 32 | 31 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥  ∈  𝑆  ∧  𝑥  <  ( abs ‘ 𝐷 ) )  ↔  ∃! 𝑥 ( 𝑥  ∈  ℤ  ∧  ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) ) | 
						
							| 33 |  | df-reu | ⊢ ( ∃! 𝑥  ∈  𝑆 𝑥  <  ( abs ‘ 𝐷 )  ↔  ∃! 𝑥 ( 𝑥  ∈  𝑆  ∧  𝑥  <  ( abs ‘ 𝐷 ) ) ) | 
						
							| 34 |  | df-reu | ⊢ ( ∃! 𝑥  ∈  ℤ ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ∃! 𝑥 ( 𝑥  ∈  ℤ  ∧  ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) ) | 
						
							| 35 | 32 33 34 | 3bitr4i | ⊢ ( ∃! 𝑥  ∈  𝑆 𝑥  <  ( abs ‘ 𝐷 )  ↔  ∃! 𝑥  ∈  ℤ ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) ) | 
						
							| 36 | 6 35 | mpbi | ⊢ ∃! 𝑥  ∈  ℤ ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) ) | 
						
							| 37 |  | breq2 | ⊢ ( 𝑥  =  𝑟  →  ( 0  ≤  𝑥  ↔  0  ≤  𝑟 ) ) | 
						
							| 38 |  | breq1 | ⊢ ( 𝑥  =  𝑟  →  ( 𝑥  <  ( abs ‘ 𝐷 )  ↔  𝑟  <  ( abs ‘ 𝐷 ) ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑥  =  𝑟  →  ( ( 𝑞  ·  𝐷 )  +  𝑥 )  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) ) | 
						
							| 40 | 39 | eqeq2d | ⊢ ( 𝑥  =  𝑟  →  ( 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 )  ↔  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) ) ) | 
						
							| 41 | 37 38 40 | 3anbi123d | ⊢ ( 𝑥  =  𝑟  →  ( ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ( 0  ≤  𝑟  ∧  𝑟  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) ) ) ) | 
						
							| 42 | 41 | rexbidv | ⊢ ( 𝑥  =  𝑟  →  ( ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑟  ∧  𝑟  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) ) ) ) | 
						
							| 43 | 42 | cbvreuvw | ⊢ ( ∃! 𝑥  ∈  ℤ ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑥  ∧  𝑥  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑥 ) )  ↔  ∃! 𝑟  ∈  ℤ ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑟  ∧  𝑟  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) ) ) | 
						
							| 44 | 36 43 | mpbi | ⊢ ∃! 𝑟  ∈  ℤ ∃ 𝑞  ∈  ℤ ( 0  ≤  𝑟  ∧  𝑟  <  ( abs ‘ 𝐷 )  ∧  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) ) |