| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divalglem0.1 | ⊢ 𝑁  ∈  ℤ | 
						
							| 2 |  | divalglem0.2 | ⊢ 𝐷  ∈  ℤ | 
						
							| 3 |  | divalglem1.3 | ⊢ 𝐷  ≠  0 | 
						
							| 4 |  | divalglem2.4 | ⊢ 𝑆  =  { 𝑟  ∈  ℕ0  ∣  𝐷  ∥  ( 𝑁  −  𝑟 ) } | 
						
							| 5 | 4 | ssrab3 | ⊢ 𝑆  ⊆  ℕ0 | 
						
							| 6 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 7 | 5 6 | sseqtri | ⊢ 𝑆  ⊆  ( ℤ≥ ‘ 0 ) | 
						
							| 8 |  | zmulcl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐷  ∈  ℤ )  →  ( 𝑁  ·  𝐷 )  ∈  ℤ ) | 
						
							| 9 | 1 2 8 | mp2an | ⊢ ( 𝑁  ·  𝐷 )  ∈  ℤ | 
						
							| 10 |  | nn0abscl | ⊢ ( ( 𝑁  ·  𝐷 )  ∈  ℤ  →  ( abs ‘ ( 𝑁  ·  𝐷 ) )  ∈  ℕ0 ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( abs ‘ ( 𝑁  ·  𝐷 ) )  ∈  ℕ0 | 
						
							| 12 | 11 | nn0zi | ⊢ ( abs ‘ ( 𝑁  ·  𝐷 ) )  ∈  ℤ | 
						
							| 13 |  | zaddcl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( abs ‘ ( 𝑁  ·  𝐷 ) )  ∈  ℤ )  →  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  ∈  ℤ ) | 
						
							| 14 | 1 12 13 | mp2an | ⊢ ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  ∈  ℤ | 
						
							| 15 | 1 2 3 | divalglem1 | ⊢ 0  ≤  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) | 
						
							| 16 |  | elnn0z | ⊢ ( ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  ∈  ℕ0  ↔  ( ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  ∈  ℤ  ∧  0  ≤  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) ) ) | 
						
							| 17 | 14 15 16 | mpbir2an | ⊢ ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  ∈  ℕ0 | 
						
							| 18 |  | iddvds | ⊢ ( 𝐷  ∈  ℤ  →  𝐷  ∥  𝐷 ) | 
						
							| 19 |  | dvdsabsb | ⊢ ( ( 𝐷  ∈  ℤ  ∧  𝐷  ∈  ℤ )  →  ( 𝐷  ∥  𝐷  ↔  𝐷  ∥  ( abs ‘ 𝐷 ) ) ) | 
						
							| 20 | 19 | anidms | ⊢ ( 𝐷  ∈  ℤ  →  ( 𝐷  ∥  𝐷  ↔  𝐷  ∥  ( abs ‘ 𝐷 ) ) ) | 
						
							| 21 | 18 20 | mpbid | ⊢ ( 𝐷  ∈  ℤ  →  𝐷  ∥  ( abs ‘ 𝐷 ) ) | 
						
							| 22 | 2 21 | ax-mp | ⊢ 𝐷  ∥  ( abs ‘ 𝐷 ) | 
						
							| 23 |  | nn0abscl | ⊢ ( 𝑁  ∈  ℤ  →  ( abs ‘ 𝑁 )  ∈  ℕ0 ) | 
						
							| 24 | 1 23 | ax-mp | ⊢ ( abs ‘ 𝑁 )  ∈  ℕ0 | 
						
							| 25 | 24 | nn0negzi | ⊢ - ( abs ‘ 𝑁 )  ∈  ℤ | 
						
							| 26 |  | nn0abscl | ⊢ ( 𝐷  ∈  ℤ  →  ( abs ‘ 𝐷 )  ∈  ℕ0 ) | 
						
							| 27 | 2 26 | ax-mp | ⊢ ( abs ‘ 𝐷 )  ∈  ℕ0 | 
						
							| 28 | 27 | nn0zi | ⊢ ( abs ‘ 𝐷 )  ∈  ℤ | 
						
							| 29 |  | dvdsmultr2 | ⊢ ( ( 𝐷  ∈  ℤ  ∧  - ( abs ‘ 𝑁 )  ∈  ℤ  ∧  ( abs ‘ 𝐷 )  ∈  ℤ )  →  ( 𝐷  ∥  ( abs ‘ 𝐷 )  →  𝐷  ∥  ( - ( abs ‘ 𝑁 )  ·  ( abs ‘ 𝐷 ) ) ) ) | 
						
							| 30 | 2 25 28 29 | mp3an | ⊢ ( 𝐷  ∥  ( abs ‘ 𝐷 )  →  𝐷  ∥  ( - ( abs ‘ 𝑁 )  ·  ( abs ‘ 𝐷 ) ) ) | 
						
							| 31 | 22 30 | ax-mp | ⊢ 𝐷  ∥  ( - ( abs ‘ 𝑁 )  ·  ( abs ‘ 𝐷 ) ) | 
						
							| 32 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 33 | 1 32 | ax-mp | ⊢ 𝑁  ∈  ℂ | 
						
							| 34 |  | zcn | ⊢ ( 𝐷  ∈  ℤ  →  𝐷  ∈  ℂ ) | 
						
							| 35 | 2 34 | ax-mp | ⊢ 𝐷  ∈  ℂ | 
						
							| 36 | 33 35 | absmuli | ⊢ ( abs ‘ ( 𝑁  ·  𝐷 ) )  =  ( ( abs ‘ 𝑁 )  ·  ( abs ‘ 𝐷 ) ) | 
						
							| 37 | 36 | negeqi | ⊢ - ( abs ‘ ( 𝑁  ·  𝐷 ) )  =  - ( ( abs ‘ 𝑁 )  ·  ( abs ‘ 𝐷 ) ) | 
						
							| 38 |  | df-neg | ⊢ - ( abs ‘ ( 𝑁  ·  𝐷 ) )  =  ( 0  −  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) | 
						
							| 39 | 33 | subidi | ⊢ ( 𝑁  −  𝑁 )  =  0 | 
						
							| 40 | 39 | oveq1i | ⊢ ( ( 𝑁  −  𝑁 )  −  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  =  ( 0  −  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) | 
						
							| 41 | 11 | nn0cni | ⊢ ( abs ‘ ( 𝑁  ·  𝐷 ) )  ∈  ℂ | 
						
							| 42 |  | subsub4 | ⊢ ( ( 𝑁  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  ( abs ‘ ( 𝑁  ·  𝐷 ) )  ∈  ℂ )  →  ( ( 𝑁  −  𝑁 )  −  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  =  ( 𝑁  −  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) ) ) | 
						
							| 43 | 33 33 41 42 | mp3an | ⊢ ( ( 𝑁  −  𝑁 )  −  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  =  ( 𝑁  −  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) ) | 
						
							| 44 | 38 40 43 | 3eqtr2ri | ⊢ ( 𝑁  −  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) )  =  - ( abs ‘ ( 𝑁  ·  𝐷 ) ) | 
						
							| 45 | 33 | abscli | ⊢ ( abs ‘ 𝑁 )  ∈  ℝ | 
						
							| 46 | 45 | recni | ⊢ ( abs ‘ 𝑁 )  ∈  ℂ | 
						
							| 47 | 35 | abscli | ⊢ ( abs ‘ 𝐷 )  ∈  ℝ | 
						
							| 48 | 47 | recni | ⊢ ( abs ‘ 𝐷 )  ∈  ℂ | 
						
							| 49 | 46 48 | mulneg1i | ⊢ ( - ( abs ‘ 𝑁 )  ·  ( abs ‘ 𝐷 ) )  =  - ( ( abs ‘ 𝑁 )  ·  ( abs ‘ 𝐷 ) ) | 
						
							| 50 | 37 44 49 | 3eqtr4i | ⊢ ( 𝑁  −  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) )  =  ( - ( abs ‘ 𝑁 )  ·  ( abs ‘ 𝐷 ) ) | 
						
							| 51 | 31 50 | breqtrri | ⊢ 𝐷  ∥  ( 𝑁  −  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) ) | 
						
							| 52 |  | oveq2 | ⊢ ( 𝑟  =  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  →  ( 𝑁  −  𝑟 )  =  ( 𝑁  −  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) ) ) | 
						
							| 53 | 52 | breq2d | ⊢ ( 𝑟  =  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  →  ( 𝐷  ∥  ( 𝑁  −  𝑟 )  ↔  𝐷  ∥  ( 𝑁  −  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) ) ) ) | 
						
							| 54 | 53 4 | elrab2 | ⊢ ( ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  ∈  𝑆  ↔  ( ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  ∈  ℕ0  ∧  𝐷  ∥  ( 𝑁  −  ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) ) ) ) ) | 
						
							| 55 | 17 51 54 | mpbir2an | ⊢ ( 𝑁  +  ( abs ‘ ( 𝑁  ·  𝐷 ) ) )  ∈  𝑆 | 
						
							| 56 | 55 | ne0ii | ⊢ 𝑆  ≠  ∅ | 
						
							| 57 |  | infssuzcl | ⊢ ( ( 𝑆  ⊆  ( ℤ≥ ‘ 0 )  ∧  𝑆  ≠  ∅ )  →  inf ( 𝑆 ,  ℝ ,   <  )  ∈  𝑆 ) | 
						
							| 58 | 7 56 57 | mp2an | ⊢ inf ( 𝑆 ,  ℝ ,   <  )  ∈  𝑆 |