| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divalglem0.1 | ⊢ 𝑁  ∈  ℤ | 
						
							| 2 |  | divalglem0.2 | ⊢ 𝐷  ∈  ℤ | 
						
							| 3 |  | divalglem1.3 | ⊢ 𝐷  ≠  0 | 
						
							| 4 |  | divalglem2.4 | ⊢ 𝑆  =  { 𝑟  ∈  ℕ0  ∣  𝐷  ∥  ( 𝑁  −  𝑟 ) } | 
						
							| 5 |  | nn0z | ⊢ ( 𝑧  ∈  ℕ0  →  𝑧  ∈  ℤ ) | 
						
							| 6 |  | zsubcl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑧  ∈  ℤ )  →  ( 𝑁  −  𝑧 )  ∈  ℤ ) | 
						
							| 7 | 1 5 6 | sylancr | ⊢ ( 𝑧  ∈  ℕ0  →  ( 𝑁  −  𝑧 )  ∈  ℤ ) | 
						
							| 8 |  | divides | ⊢ ( ( 𝐷  ∈  ℤ  ∧  ( 𝑁  −  𝑧 )  ∈  ℤ )  →  ( 𝐷  ∥  ( 𝑁  −  𝑧 )  ↔  ∃ 𝑞  ∈  ℤ ( 𝑞  ·  𝐷 )  =  ( 𝑁  −  𝑧 ) ) ) | 
						
							| 9 | 2 7 8 | sylancr | ⊢ ( 𝑧  ∈  ℕ0  →  ( 𝐷  ∥  ( 𝑁  −  𝑧 )  ↔  ∃ 𝑞  ∈  ℤ ( 𝑞  ·  𝐷 )  =  ( 𝑁  −  𝑧 ) ) ) | 
						
							| 10 |  | nn0cn | ⊢ ( 𝑧  ∈  ℕ0  →  𝑧  ∈  ℂ ) | 
						
							| 11 |  | zmulcl | ⊢ ( ( 𝑞  ∈  ℤ  ∧  𝐷  ∈  ℤ )  →  ( 𝑞  ·  𝐷 )  ∈  ℤ ) | 
						
							| 12 | 2 11 | mpan2 | ⊢ ( 𝑞  ∈  ℤ  →  ( 𝑞  ·  𝐷 )  ∈  ℤ ) | 
						
							| 13 | 12 | zcnd | ⊢ ( 𝑞  ∈  ℤ  →  ( 𝑞  ·  𝐷 )  ∈  ℂ ) | 
						
							| 14 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 15 | 1 14 | ax-mp | ⊢ 𝑁  ∈  ℂ | 
						
							| 16 |  | subadd | ⊢ ( ( 𝑁  ∈  ℂ  ∧  𝑧  ∈  ℂ  ∧  ( 𝑞  ·  𝐷 )  ∈  ℂ )  →  ( ( 𝑁  −  𝑧 )  =  ( 𝑞  ·  𝐷 )  ↔  ( 𝑧  +  ( 𝑞  ·  𝐷 ) )  =  𝑁 ) ) | 
						
							| 17 | 15 16 | mp3an1 | ⊢ ( ( 𝑧  ∈  ℂ  ∧  ( 𝑞  ·  𝐷 )  ∈  ℂ )  →  ( ( 𝑁  −  𝑧 )  =  ( 𝑞  ·  𝐷 )  ↔  ( 𝑧  +  ( 𝑞  ·  𝐷 ) )  =  𝑁 ) ) | 
						
							| 18 |  | addcom | ⊢ ( ( 𝑧  ∈  ℂ  ∧  ( 𝑞  ·  𝐷 )  ∈  ℂ )  →  ( 𝑧  +  ( 𝑞  ·  𝐷 ) )  =  ( ( 𝑞  ·  𝐷 )  +  𝑧 ) ) | 
						
							| 19 | 18 | eqeq1d | ⊢ ( ( 𝑧  ∈  ℂ  ∧  ( 𝑞  ·  𝐷 )  ∈  ℂ )  →  ( ( 𝑧  +  ( 𝑞  ·  𝐷 ) )  =  𝑁  ↔  ( ( 𝑞  ·  𝐷 )  +  𝑧 )  =  𝑁 ) ) | 
						
							| 20 | 17 19 | bitrd | ⊢ ( ( 𝑧  ∈  ℂ  ∧  ( 𝑞  ·  𝐷 )  ∈  ℂ )  →  ( ( 𝑁  −  𝑧 )  =  ( 𝑞  ·  𝐷 )  ↔  ( ( 𝑞  ·  𝐷 )  +  𝑧 )  =  𝑁 ) ) | 
						
							| 21 | 10 13 20 | syl2an | ⊢ ( ( 𝑧  ∈  ℕ0  ∧  𝑞  ∈  ℤ )  →  ( ( 𝑁  −  𝑧 )  =  ( 𝑞  ·  𝐷 )  ↔  ( ( 𝑞  ·  𝐷 )  +  𝑧 )  =  𝑁 ) ) | 
						
							| 22 |  | eqcom | ⊢ ( ( 𝑁  −  𝑧 )  =  ( 𝑞  ·  𝐷 )  ↔  ( 𝑞  ·  𝐷 )  =  ( 𝑁  −  𝑧 ) ) | 
						
							| 23 |  | eqcom | ⊢ ( ( ( 𝑞  ·  𝐷 )  +  𝑧 )  =  𝑁  ↔  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑧 ) ) | 
						
							| 24 | 21 22 23 | 3bitr3g | ⊢ ( ( 𝑧  ∈  ℕ0  ∧  𝑞  ∈  ℤ )  →  ( ( 𝑞  ·  𝐷 )  =  ( 𝑁  −  𝑧 )  ↔  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑧 ) ) ) | 
						
							| 25 | 24 | rexbidva | ⊢ ( 𝑧  ∈  ℕ0  →  ( ∃ 𝑞  ∈  ℤ ( 𝑞  ·  𝐷 )  =  ( 𝑁  −  𝑧 )  ↔  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑧 ) ) ) | 
						
							| 26 | 9 25 | bitrd | ⊢ ( 𝑧  ∈  ℕ0  →  ( 𝐷  ∥  ( 𝑁  −  𝑧 )  ↔  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑧 ) ) ) | 
						
							| 27 | 26 | pm5.32i | ⊢ ( ( 𝑧  ∈  ℕ0  ∧  𝐷  ∥  ( 𝑁  −  𝑧 ) )  ↔  ( 𝑧  ∈  ℕ0  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑧 ) ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑟  =  𝑧  →  ( 𝑁  −  𝑟 )  =  ( 𝑁  −  𝑧 ) ) | 
						
							| 29 | 28 | breq2d | ⊢ ( 𝑟  =  𝑧  →  ( 𝐷  ∥  ( 𝑁  −  𝑟 )  ↔  𝐷  ∥  ( 𝑁  −  𝑧 ) ) ) | 
						
							| 30 | 29 4 | elrab2 | ⊢ ( 𝑧  ∈  𝑆  ↔  ( 𝑧  ∈  ℕ0  ∧  𝐷  ∥  ( 𝑁  −  𝑧 ) ) ) | 
						
							| 31 |  | oveq2 | ⊢ ( 𝑟  =  𝑧  →  ( ( 𝑞  ·  𝐷 )  +  𝑟 )  =  ( ( 𝑞  ·  𝐷 )  +  𝑧 ) ) | 
						
							| 32 | 31 | eqeq2d | ⊢ ( 𝑟  =  𝑧  →  ( 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 )  ↔  𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑧 ) ) ) | 
						
							| 33 | 32 | rexbidv | ⊢ ( 𝑟  =  𝑧  →  ( ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 )  ↔  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑧 ) ) ) | 
						
							| 34 | 33 | elrab | ⊢ ( 𝑧  ∈  { 𝑟  ∈  ℕ0  ∣  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) }  ↔  ( 𝑧  ∈  ℕ0  ∧  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑧 ) ) ) | 
						
							| 35 | 27 30 34 | 3bitr4i | ⊢ ( 𝑧  ∈  𝑆  ↔  𝑧  ∈  { 𝑟  ∈  ℕ0  ∣  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) } ) | 
						
							| 36 | 35 | eqriv | ⊢ 𝑆  =  { 𝑟  ∈  ℕ0  ∣  ∃ 𝑞  ∈  ℤ 𝑁  =  ( ( 𝑞  ·  𝐷 )  +  𝑟 ) } |