| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divalglem0.1 | ⊢ 𝑁  ∈  ℤ | 
						
							| 2 |  | divalglem0.2 | ⊢ 𝐷  ∈  ℤ | 
						
							| 3 |  | divalglem1.3 | ⊢ 𝐷  ≠  0 | 
						
							| 4 |  | divalglem2.4 | ⊢ 𝑆  =  { 𝑟  ∈  ℕ0  ∣  𝐷  ∥  ( 𝑁  −  𝑟 ) } | 
						
							| 5 |  | divalglem5.5 | ⊢ 𝑅  =  inf ( 𝑆 ,  ℝ ,   <  ) | 
						
							| 6 | 1 2 3 4 | divalglem2 | ⊢ inf ( 𝑆 ,  ℝ ,   <  )  ∈  𝑆 | 
						
							| 7 | 5 6 | eqeltri | ⊢ 𝑅  ∈  𝑆 | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑥  =  𝑅  →  ( 𝑁  −  𝑥 )  =  ( 𝑁  −  𝑅 ) ) | 
						
							| 9 | 8 | breq2d | ⊢ ( 𝑥  =  𝑅  →  ( 𝐷  ∥  ( 𝑁  −  𝑥 )  ↔  𝐷  ∥  ( 𝑁  −  𝑅 ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑟  =  𝑥  →  ( 𝑁  −  𝑟 )  =  ( 𝑁  −  𝑥 ) ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝑟  =  𝑥  →  ( 𝐷  ∥  ( 𝑁  −  𝑟 )  ↔  𝐷  ∥  ( 𝑁  −  𝑥 ) ) ) | 
						
							| 12 | 11 | cbvrabv | ⊢ { 𝑟  ∈  ℕ0  ∣  𝐷  ∥  ( 𝑁  −  𝑟 ) }  =  { 𝑥  ∈  ℕ0  ∣  𝐷  ∥  ( 𝑁  −  𝑥 ) } | 
						
							| 13 | 4 12 | eqtri | ⊢ 𝑆  =  { 𝑥  ∈  ℕ0  ∣  𝐷  ∥  ( 𝑁  −  𝑥 ) } | 
						
							| 14 | 9 13 | elrab2 | ⊢ ( 𝑅  ∈  𝑆  ↔  ( 𝑅  ∈  ℕ0  ∧  𝐷  ∥  ( 𝑁  −  𝑅 ) ) ) | 
						
							| 15 | 7 14 | mpbi | ⊢ ( 𝑅  ∈  ℕ0  ∧  𝐷  ∥  ( 𝑁  −  𝑅 ) ) | 
						
							| 16 | 15 | simpli | ⊢ 𝑅  ∈  ℕ0 | 
						
							| 17 | 16 | nn0ge0i | ⊢ 0  ≤  𝑅 | 
						
							| 18 |  | nnabscl | ⊢ ( ( 𝐷  ∈  ℤ  ∧  𝐷  ≠  0 )  →  ( abs ‘ 𝐷 )  ∈  ℕ ) | 
						
							| 19 | 2 3 18 | mp2an | ⊢ ( abs ‘ 𝐷 )  ∈  ℕ | 
						
							| 20 | 19 | nngt0i | ⊢ 0  <  ( abs ‘ 𝐷 ) | 
						
							| 21 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 22 |  | zcn | ⊢ ( 𝐷  ∈  ℤ  →  𝐷  ∈  ℂ ) | 
						
							| 23 | 2 22 | ax-mp | ⊢ 𝐷  ∈  ℂ | 
						
							| 24 | 23 | abscli | ⊢ ( abs ‘ 𝐷 )  ∈  ℝ | 
						
							| 25 | 21 24 | ltnlei | ⊢ ( 0  <  ( abs ‘ 𝐷 )  ↔  ¬  ( abs ‘ 𝐷 )  ≤  0 ) | 
						
							| 26 | 20 25 | mpbi | ⊢ ¬  ( abs ‘ 𝐷 )  ≤  0 | 
						
							| 27 | 4 | ssrab3 | ⊢ 𝑆  ⊆  ℕ0 | 
						
							| 28 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 29 | 27 28 | sseqtri | ⊢ 𝑆  ⊆  ( ℤ≥ ‘ 0 ) | 
						
							| 30 |  | nn0abscl | ⊢ ( 𝐷  ∈  ℤ  →  ( abs ‘ 𝐷 )  ∈  ℕ0 ) | 
						
							| 31 | 2 30 | ax-mp | ⊢ ( abs ‘ 𝐷 )  ∈  ℕ0 | 
						
							| 32 |  | nn0sub2 | ⊢ ( ( ( abs ‘ 𝐷 )  ∈  ℕ0  ∧  𝑅  ∈  ℕ0  ∧  ( abs ‘ 𝐷 )  ≤  𝑅 )  →  ( 𝑅  −  ( abs ‘ 𝐷 ) )  ∈  ℕ0 ) | 
						
							| 33 | 31 16 32 | mp3an12 | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  ( 𝑅  −  ( abs ‘ 𝐷 ) )  ∈  ℕ0 ) | 
						
							| 34 | 15 | a1i | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  ( 𝑅  ∈  ℕ0  ∧  𝐷  ∥  ( 𝑁  −  𝑅 ) ) ) | 
						
							| 35 |  | nn0z | ⊢ ( 𝑅  ∈  ℕ0  →  𝑅  ∈  ℤ ) | 
						
							| 36 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 37 | 1 2 | divalglem0 | ⊢ ( ( 𝑅  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( 𝐷  ∥  ( 𝑁  −  𝑅 )  →  𝐷  ∥  ( 𝑁  −  ( 𝑅  −  ( 1  ·  ( abs ‘ 𝐷 ) ) ) ) ) ) | 
						
							| 38 | 36 37 | mpan2 | ⊢ ( 𝑅  ∈  ℤ  →  ( 𝐷  ∥  ( 𝑁  −  𝑅 )  →  𝐷  ∥  ( 𝑁  −  ( 𝑅  −  ( 1  ·  ( abs ‘ 𝐷 ) ) ) ) ) ) | 
						
							| 39 | 24 | recni | ⊢ ( abs ‘ 𝐷 )  ∈  ℂ | 
						
							| 40 | 39 | mullidi | ⊢ ( 1  ·  ( abs ‘ 𝐷 ) )  =  ( abs ‘ 𝐷 ) | 
						
							| 41 | 40 | oveq2i | ⊢ ( 𝑅  −  ( 1  ·  ( abs ‘ 𝐷 ) ) )  =  ( 𝑅  −  ( abs ‘ 𝐷 ) ) | 
						
							| 42 | 41 | oveq2i | ⊢ ( 𝑁  −  ( 𝑅  −  ( 1  ·  ( abs ‘ 𝐷 ) ) ) )  =  ( 𝑁  −  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) | 
						
							| 43 | 42 | breq2i | ⊢ ( 𝐷  ∥  ( 𝑁  −  ( 𝑅  −  ( 1  ·  ( abs ‘ 𝐷 ) ) ) )  ↔  𝐷  ∥  ( 𝑁  −  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) ) | 
						
							| 44 | 38 43 | imbitrdi | ⊢ ( 𝑅  ∈  ℤ  →  ( 𝐷  ∥  ( 𝑁  −  𝑅 )  →  𝐷  ∥  ( 𝑁  −  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) ) ) | 
						
							| 45 | 35 44 | syl | ⊢ ( 𝑅  ∈  ℕ0  →  ( 𝐷  ∥  ( 𝑁  −  𝑅 )  →  𝐷  ∥  ( 𝑁  −  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) ) ) | 
						
							| 46 | 45 | imp | ⊢ ( ( 𝑅  ∈  ℕ0  ∧  𝐷  ∥  ( 𝑁  −  𝑅 ) )  →  𝐷  ∥  ( 𝑁  −  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) ) | 
						
							| 47 | 34 46 | syl | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  𝐷  ∥  ( 𝑁  −  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) ) | 
						
							| 48 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑅  −  ( abs ‘ 𝐷 ) )  →  ( 𝑁  −  𝑥 )  =  ( 𝑁  −  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) ) | 
						
							| 49 | 48 | breq2d | ⊢ ( 𝑥  =  ( 𝑅  −  ( abs ‘ 𝐷 ) )  →  ( 𝐷  ∥  ( 𝑁  −  𝑥 )  ↔  𝐷  ∥  ( 𝑁  −  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) ) ) | 
						
							| 50 | 49 13 | elrab2 | ⊢ ( ( 𝑅  −  ( abs ‘ 𝐷 ) )  ∈  𝑆  ↔  ( ( 𝑅  −  ( abs ‘ 𝐷 ) )  ∈  ℕ0  ∧  𝐷  ∥  ( 𝑁  −  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) ) ) | 
						
							| 51 | 33 47 50 | sylanbrc | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  ( 𝑅  −  ( abs ‘ 𝐷 ) )  ∈  𝑆 ) | 
						
							| 52 |  | infssuzle | ⊢ ( ( 𝑆  ⊆  ( ℤ≥ ‘ 0 )  ∧  ( 𝑅  −  ( abs ‘ 𝐷 ) )  ∈  𝑆 )  →  inf ( 𝑆 ,  ℝ ,   <  )  ≤  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) | 
						
							| 53 | 29 51 52 | sylancr | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  inf ( 𝑆 ,  ℝ ,   <  )  ≤  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) | 
						
							| 54 | 5 53 | eqbrtrid | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  𝑅  ≤  ( 𝑅  −  ( abs ‘ 𝐷 ) ) ) | 
						
							| 55 | 34 | simpld | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  𝑅  ∈  ℕ0 ) | 
						
							| 56 | 55 | nn0red | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  𝑅  ∈  ℝ ) | 
						
							| 57 |  | lesub | ⊢ ( ( 𝑅  ∈  ℝ  ∧  𝑅  ∈  ℝ  ∧  ( abs ‘ 𝐷 )  ∈  ℝ )  →  ( 𝑅  ≤  ( 𝑅  −  ( abs ‘ 𝐷 ) )  ↔  ( abs ‘ 𝐷 )  ≤  ( 𝑅  −  𝑅 ) ) ) | 
						
							| 58 | 24 57 | mp3an3 | ⊢ ( ( 𝑅  ∈  ℝ  ∧  𝑅  ∈  ℝ )  →  ( 𝑅  ≤  ( 𝑅  −  ( abs ‘ 𝐷 ) )  ↔  ( abs ‘ 𝐷 )  ≤  ( 𝑅  −  𝑅 ) ) ) | 
						
							| 59 | 56 56 58 | syl2anc | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  ( 𝑅  ≤  ( 𝑅  −  ( abs ‘ 𝐷 ) )  ↔  ( abs ‘ 𝐷 )  ≤  ( 𝑅  −  𝑅 ) ) ) | 
						
							| 60 | 56 | recnd | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  𝑅  ∈  ℂ ) | 
						
							| 61 | 60 | subidd | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  ( 𝑅  −  𝑅 )  =  0 ) | 
						
							| 62 | 61 | breq2d | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  ( ( abs ‘ 𝐷 )  ≤  ( 𝑅  −  𝑅 )  ↔  ( abs ‘ 𝐷 )  ≤  0 ) ) | 
						
							| 63 | 59 62 | bitrd | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  ( 𝑅  ≤  ( 𝑅  −  ( abs ‘ 𝐷 ) )  ↔  ( abs ‘ 𝐷 )  ≤  0 ) ) | 
						
							| 64 | 54 63 | mpbid | ⊢ ( ( abs ‘ 𝐷 )  ≤  𝑅  →  ( abs ‘ 𝐷 )  ≤  0 ) | 
						
							| 65 | 26 64 | mto | ⊢ ¬  ( abs ‘ 𝐷 )  ≤  𝑅 | 
						
							| 66 | 16 | nn0rei | ⊢ 𝑅  ∈  ℝ | 
						
							| 67 | 66 24 | ltnlei | ⊢ ( 𝑅  <  ( abs ‘ 𝐷 )  ↔  ¬  ( abs ‘ 𝐷 )  ≤  𝑅 ) | 
						
							| 68 | 65 67 | mpbir | ⊢ 𝑅  <  ( abs ‘ 𝐷 ) | 
						
							| 69 | 17 68 | pm3.2i | ⊢ ( 0  ≤  𝑅  ∧  𝑅  <  ( abs ‘ 𝐷 ) ) |