| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divalglem8.1 | ⊢ 𝑁  ∈  ℤ | 
						
							| 2 |  | divalglem8.2 | ⊢ 𝐷  ∈  ℤ | 
						
							| 3 |  | divalglem8.3 | ⊢ 𝐷  ≠  0 | 
						
							| 4 |  | divalglem8.4 | ⊢ 𝑆  =  { 𝑟  ∈  ℕ0  ∣  𝐷  ∥  ( 𝑁  −  𝑟 ) } | 
						
							| 5 | 4 | ssrab3 | ⊢ 𝑆  ⊆  ℕ0 | 
						
							| 6 |  | nn0sscn | ⊢ ℕ0  ⊆  ℂ | 
						
							| 7 | 5 6 | sstri | ⊢ 𝑆  ⊆  ℂ | 
						
							| 8 | 7 | sseli | ⊢ ( 𝑌  ∈  𝑆  →  𝑌  ∈  ℂ ) | 
						
							| 9 | 7 | sseli | ⊢ ( 𝑋  ∈  𝑆  →  𝑋  ∈  ℂ ) | 
						
							| 10 |  | nnabscl | ⊢ ( ( 𝐷  ∈  ℤ  ∧  𝐷  ≠  0 )  →  ( abs ‘ 𝐷 )  ∈  ℕ ) | 
						
							| 11 | 2 3 10 | mp2an | ⊢ ( abs ‘ 𝐷 )  ∈  ℕ | 
						
							| 12 | 11 | nnzi | ⊢ ( abs ‘ 𝐷 )  ∈  ℤ | 
						
							| 13 |  | zmulcl | ⊢ ( ( 𝐾  ∈  ℤ  ∧  ( abs ‘ 𝐷 )  ∈  ℤ )  →  ( 𝐾  ·  ( abs ‘ 𝐷 ) )  ∈  ℤ ) | 
						
							| 14 | 12 13 | mpan2 | ⊢ ( 𝐾  ∈  ℤ  →  ( 𝐾  ·  ( abs ‘ 𝐷 ) )  ∈  ℤ ) | 
						
							| 15 | 14 | zcnd | ⊢ ( 𝐾  ∈  ℤ  →  ( 𝐾  ·  ( abs ‘ 𝐷 ) )  ∈  ℂ ) | 
						
							| 16 |  | subadd | ⊢ ( ( 𝑌  ∈  ℂ  ∧  𝑋  ∈  ℂ  ∧  ( 𝐾  ·  ( abs ‘ 𝐷 ) )  ∈  ℂ )  →  ( ( 𝑌  −  𝑋 )  =  ( 𝐾  ·  ( abs ‘ 𝐷 ) )  ↔  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  =  𝑌 ) ) | 
						
							| 17 | 8 9 15 16 | syl3an | ⊢ ( ( 𝑌  ∈  𝑆  ∧  𝑋  ∈  𝑆  ∧  𝐾  ∈  ℤ )  →  ( ( 𝑌  −  𝑋 )  =  ( 𝐾  ·  ( abs ‘ 𝐷 ) )  ↔  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  =  𝑌 ) ) | 
						
							| 18 | 17 | 3com12 | ⊢ ( ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆  ∧  𝐾  ∈  ℤ )  →  ( ( 𝑌  −  𝑋 )  =  ( 𝐾  ·  ( abs ‘ 𝐷 ) )  ↔  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  =  𝑌 ) ) | 
						
							| 19 |  | eqcom | ⊢ ( ( 𝑌  −  𝑋 )  =  ( 𝐾  ·  ( abs ‘ 𝐷 ) )  ↔  ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 ) ) | 
						
							| 20 |  | eqcom | ⊢ ( ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  =  𝑌  ↔  𝑌  =  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) ) ) | 
						
							| 21 | 18 19 20 | 3bitr3g | ⊢ ( ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆  ∧  𝐾  ∈  ℤ )  →  ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  ↔  𝑌  =  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) ) ) ) | 
						
							| 22 | 21 | 3adant1r | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  𝑌  ∈  𝑆  ∧  𝐾  ∈  ℤ )  →  ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  ↔  𝑌  =  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) ) ) ) | 
						
							| 23 | 22 | 3adant2r | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) )  ∧  𝐾  ∈  ℤ )  →  ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  ↔  𝑌  =  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) ) ) ) | 
						
							| 24 |  | breq1 | ⊢ ( 𝑧  =  𝑌  →  ( 𝑧  <  ( abs ‘ 𝐷 )  ↔  𝑌  <  ( abs ‘ 𝐷 ) ) ) | 
						
							| 25 |  | eleq1 | ⊢ ( 𝑧  =  𝑌  →  ( 𝑧  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) )  ↔  𝑌  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 26 | 24 25 | imbi12d | ⊢ ( 𝑧  =  𝑌  →  ( ( 𝑧  <  ( abs ‘ 𝐷 )  →  𝑧  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) )  ↔  ( 𝑌  <  ( abs ‘ 𝐷 )  →  𝑌  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) ) | 
						
							| 27 | 5 | sseli | ⊢ ( 𝑧  ∈  𝑆  →  𝑧  ∈  ℕ0 ) | 
						
							| 28 |  | elnn0z | ⊢ ( 𝑧  ∈  ℕ0  ↔  ( 𝑧  ∈  ℤ  ∧  0  ≤  𝑧 ) ) | 
						
							| 29 | 27 28 | sylib | ⊢ ( 𝑧  ∈  𝑆  →  ( 𝑧  ∈  ℤ  ∧  0  ≤  𝑧 ) ) | 
						
							| 30 | 29 | anim1i | ⊢ ( ( 𝑧  ∈  𝑆  ∧  𝑧  <  ( abs ‘ 𝐷 ) )  →  ( ( 𝑧  ∈  ℤ  ∧  0  ≤  𝑧 )  ∧  𝑧  <  ( abs ‘ 𝐷 ) ) ) | 
						
							| 31 |  | df-3an | ⊢ ( ( 𝑧  ∈  ℤ  ∧  0  ≤  𝑧  ∧  𝑧  <  ( abs ‘ 𝐷 ) )  ↔  ( ( 𝑧  ∈  ℤ  ∧  0  ≤  𝑧 )  ∧  𝑧  <  ( abs ‘ 𝐷 ) ) ) | 
						
							| 32 | 30 31 | sylibr | ⊢ ( ( 𝑧  ∈  𝑆  ∧  𝑧  <  ( abs ‘ 𝐷 ) )  →  ( 𝑧  ∈  ℤ  ∧  0  ≤  𝑧  ∧  𝑧  <  ( abs ‘ 𝐷 ) ) ) | 
						
							| 33 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 34 |  | elfzm11 | ⊢ ( ( 0  ∈  ℤ  ∧  ( abs ‘ 𝐷 )  ∈  ℤ )  →  ( 𝑧  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) )  ↔  ( 𝑧  ∈  ℤ  ∧  0  ≤  𝑧  ∧  𝑧  <  ( abs ‘ 𝐷 ) ) ) ) | 
						
							| 35 | 33 12 34 | mp2an | ⊢ ( 𝑧  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) )  ↔  ( 𝑧  ∈  ℤ  ∧  0  ≤  𝑧  ∧  𝑧  <  ( abs ‘ 𝐷 ) ) ) | 
						
							| 36 | 32 35 | sylibr | ⊢ ( ( 𝑧  ∈  𝑆  ∧  𝑧  <  ( abs ‘ 𝐷 ) )  →  𝑧  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝑧  ∈  𝑆  →  ( 𝑧  <  ( abs ‘ 𝐷 )  →  𝑧  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 38 | 26 37 | vtoclga | ⊢ ( 𝑌  ∈  𝑆  →  ( 𝑌  <  ( abs ‘ 𝐷 )  →  𝑌  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 39 |  | eleq1 | ⊢ ( 𝑌  =  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  →  ( 𝑌  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) )  ↔  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 40 | 39 | biimpd | ⊢ ( 𝑌  =  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  →  ( 𝑌  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) )  →  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 41 | 38 40 | sylan9 | ⊢ ( ( 𝑌  ∈  𝑆  ∧  𝑌  =  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) ) )  →  ( 𝑌  <  ( abs ‘ 𝐷 )  →  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 42 | 41 | impancom | ⊢ ( ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) )  →  ( 𝑌  =  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  →  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 43 | 42 | 3ad2ant2 | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) )  ∧  𝐾  ∈  ℤ )  →  ( 𝑌  =  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  →  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 44 |  | breq1 | ⊢ ( 𝑧  =  𝑋  →  ( 𝑧  <  ( abs ‘ 𝐷 )  ↔  𝑋  <  ( abs ‘ 𝐷 ) ) ) | 
						
							| 45 |  | eleq1 | ⊢ ( 𝑧  =  𝑋  →  ( 𝑧  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) )  ↔  𝑋  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 46 | 44 45 | imbi12d | ⊢ ( 𝑧  =  𝑋  →  ( ( 𝑧  <  ( abs ‘ 𝐷 )  →  𝑧  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) )  ↔  ( 𝑋  <  ( abs ‘ 𝐷 )  →  𝑋  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) ) | 
						
							| 47 | 46 37 | vtoclga | ⊢ ( 𝑋  ∈  𝑆  →  ( 𝑋  <  ( abs ‘ 𝐷 )  →  𝑋  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 48 | 47 | imp | ⊢ ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  →  𝑋  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) | 
						
							| 49 | 2 3 | divalglem7 | ⊢ ( ( 𝑋  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) )  ∧  𝐾  ∈  ℤ )  →  ( 𝐾  ≠  0  →  ¬  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 50 | 48 49 | sylan | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  𝐾  ∈  ℤ )  →  ( 𝐾  ≠  0  →  ¬  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 51 | 50 | 3adant2 | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) )  ∧  𝐾  ∈  ℤ )  →  ( 𝐾  ≠  0  →  ¬  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) ) ) ) | 
						
							| 52 | 51 | con2d | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) )  ∧  𝐾  ∈  ℤ )  →  ( ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  ∈  ( 0 ... ( ( abs ‘ 𝐷 )  −  1 ) )  →  ¬  𝐾  ≠  0 ) ) | 
						
							| 53 | 43 52 | syld | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) )  ∧  𝐾  ∈  ℤ )  →  ( 𝑌  =  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  →  ¬  𝐾  ≠  0 ) ) | 
						
							| 54 |  | df-ne | ⊢ ( 𝐾  ≠  0  ↔  ¬  𝐾  =  0 ) | 
						
							| 55 | 54 | con2bii | ⊢ ( 𝐾  =  0  ↔  ¬  𝐾  ≠  0 ) | 
						
							| 56 | 53 55 | imbitrrdi | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) )  ∧  𝐾  ∈  ℤ )  →  ( 𝑌  =  ( 𝑋  +  ( 𝐾  ·  ( abs ‘ 𝐷 ) ) )  →  𝐾  =  0 ) ) | 
						
							| 57 | 23 56 | sylbid | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) )  ∧  𝐾  ∈  ℤ )  →  ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  →  𝐾  =  0 ) ) | 
						
							| 58 |  | oveq1 | ⊢ ( 𝐾  =  0  →  ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 0  ·  ( abs ‘ 𝐷 ) ) ) | 
						
							| 59 | 11 | nncni | ⊢ ( abs ‘ 𝐷 )  ∈  ℂ | 
						
							| 60 | 59 | mul02i | ⊢ ( 0  ·  ( abs ‘ 𝐷 ) )  =  0 | 
						
							| 61 | 58 60 | eqtrdi | ⊢ ( 𝐾  =  0  →  ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  0 ) | 
						
							| 62 | 61 | eqeq1d | ⊢ ( 𝐾  =  0  →  ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  ↔  0  =  ( 𝑌  −  𝑋 ) ) ) | 
						
							| 63 | 62 | biimpac | ⊢ ( ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  ∧  𝐾  =  0 )  →  0  =  ( 𝑌  −  𝑋 ) ) | 
						
							| 64 |  | subeq0 | ⊢ ( ( 𝑌  ∈  ℂ  ∧  𝑋  ∈  ℂ )  →  ( ( 𝑌  −  𝑋 )  =  0  ↔  𝑌  =  𝑋 ) ) | 
						
							| 65 | 8 9 64 | syl2anr | ⊢ ( ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 )  →  ( ( 𝑌  −  𝑋 )  =  0  ↔  𝑌  =  𝑋 ) ) | 
						
							| 66 |  | eqcom | ⊢ ( ( 𝑌  −  𝑋 )  =  0  ↔  0  =  ( 𝑌  −  𝑋 ) ) | 
						
							| 67 |  | eqcom | ⊢ ( 𝑌  =  𝑋  ↔  𝑋  =  𝑌 ) | 
						
							| 68 | 65 66 67 | 3bitr3g | ⊢ ( ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 )  →  ( 0  =  ( 𝑌  −  𝑋 )  ↔  𝑋  =  𝑌 ) ) | 
						
							| 69 | 63 68 | imbitrid | ⊢ ( ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 )  →  ( ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  ∧  𝐾  =  0 )  →  𝑋  =  𝑌 ) ) | 
						
							| 70 | 69 | ad2ant2r | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) ) )  →  ( ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  ∧  𝐾  =  0 )  →  𝑋  =  𝑌 ) ) | 
						
							| 71 | 70 | 3adant3 | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) )  ∧  𝐾  ∈  ℤ )  →  ( ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  ∧  𝐾  =  0 )  →  𝑋  =  𝑌 ) ) | 
						
							| 72 | 71 | expd | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) )  ∧  𝐾  ∈  ℤ )  →  ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  →  ( 𝐾  =  0  →  𝑋  =  𝑌 ) ) ) | 
						
							| 73 | 57 72 | mpdd | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) )  ∧  𝐾  ∈  ℤ )  →  ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  →  𝑋  =  𝑌 ) ) | 
						
							| 74 | 73 | 3expia | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑋  <  ( abs ‘ 𝐷 ) )  ∧  ( 𝑌  ∈  𝑆  ∧  𝑌  <  ( abs ‘ 𝐷 ) ) )  →  ( 𝐾  ∈  ℤ  →  ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 75 | 74 | an4s | ⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 )  ∧  ( 𝑋  <  ( abs ‘ 𝐷 )  ∧  𝑌  <  ( abs ‘ 𝐷 ) ) )  →  ( 𝐾  ∈  ℤ  →  ( ( 𝐾  ·  ( abs ‘ 𝐷 ) )  =  ( 𝑌  −  𝑋 )  →  𝑋  =  𝑌 ) ) ) |