Metamath Proof Explorer
Description: An associative law for division. (Contributed by NM, 15-Feb-1995)
|
|
Ref |
Expression |
|
Hypotheses |
divclz.1 |
⊢ 𝐴 ∈ ℂ |
|
|
divclz.2 |
⊢ 𝐵 ∈ ℂ |
|
|
divmulz.3 |
⊢ 𝐶 ∈ ℂ |
|
|
divass.4 |
⊢ 𝐶 ≠ 0 |
|
Assertion |
divassi |
⊢ ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
divclz.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
divclz.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
divmulz.3 |
⊢ 𝐶 ∈ ℂ |
4 |
|
divass.4 |
⊢ 𝐶 ≠ 0 |
5 |
1 2 3
|
divasszi |
⊢ ( 𝐶 ≠ 0 → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) |