Metamath Proof Explorer


Theorem divassi

Description: An associative law for division. (Contributed by NM, 15-Feb-1995)

Ref Expression
Hypotheses divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divmulz.3 𝐶 ∈ ℂ
divass.4 𝐶 ≠ 0
Assertion divassi ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) )

Proof

Step Hyp Ref Expression
1 divclz.1 𝐴 ∈ ℂ
2 divclz.2 𝐵 ∈ ℂ
3 divmulz.3 𝐶 ∈ ℂ
4 divass.4 𝐶 ≠ 0
5 1 2 3 divasszi ( 𝐶 ≠ 0 → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) )
6 4 5 ax-mp ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) )