Description: An associative law for division. (Contributed by NM, 12-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
divclz.2 | ⊢ 𝐵 ∈ ℂ | ||
divmulz.3 | ⊢ 𝐶 ∈ ℂ | ||
Assertion | divasszi | ⊢ ( 𝐶 ≠ 0 → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
2 | divclz.2 | ⊢ 𝐵 ∈ ℂ | |
3 | divmulz.3 | ⊢ 𝐶 ∈ ℂ | |
4 | divass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) ) | |
5 | 1 2 4 | mp3an12 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) ) |
6 | 3 5 | mpan | ⊢ ( 𝐶 ≠ 0 → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) ) |