Metamath Proof Explorer
		
		
		
		Description:  A cancellation law for division.  (Contributed by NM, 18-May-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | divcl.3 | ⊢ 𝐵  ≠  0 | 
				
					|  | Assertion | divcan1i | ⊢  ( ( 𝐴  /  𝐵 )  ·  𝐵 )  =  𝐴 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | divcl.3 | ⊢ 𝐵  ≠  0 | 
						
							| 4 | 1 2 3 | divcli | ⊢ ( 𝐴  /  𝐵 )  ∈  ℂ | 
						
							| 5 | 1 2 3 | divcan2i | ⊢ ( 𝐵  ·  ( 𝐴  /  𝐵 ) )  =  𝐴 | 
						
							| 6 | 2 4 5 | mulcomli | ⊢ ( ( 𝐴  /  𝐵 )  ·  𝐵 )  =  𝐴 |