Description: A cancellation law for division. (Contributed by NM, 2-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
divclz.2 | ⊢ 𝐵 ∈ ℂ | ||
Assertion | divcan1zi | ⊢ ( 𝐵 ≠ 0 → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
2 | divclz.2 | ⊢ 𝐵 ∈ ℂ | |
3 | divcan1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) | |
4 | 1 2 3 | mp3an12 | ⊢ ( 𝐵 ≠ 0 → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |