Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) |
2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ ) |
3 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
4 |
|
3simpc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
5 |
|
divmul |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 / 𝐵 ) ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ↔ ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) ) |
6 |
2 3 4 5
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ↔ ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) ) |
7 |
1 6
|
mpbii |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝐴 / 𝐵 ) ) = 𝐴 ) |