| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝐵 · 𝐴 ) = ( 𝐵 · 𝐴 ) |
| 2 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 3 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 4 |
2 3
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · 𝐴 ) ∈ ℂ ) |
| 5 |
|
3simpc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 6 |
|
divmul |
⊢ ( ( ( 𝐵 · 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐵 · 𝐴 ) / 𝐵 ) = 𝐴 ↔ ( 𝐵 · 𝐴 ) = ( 𝐵 · 𝐴 ) ) ) |
| 7 |
4 3 5 6
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( 𝐵 · 𝐴 ) / 𝐵 ) = 𝐴 ↔ ( 𝐵 · 𝐴 ) = ( 𝐵 · 𝐴 ) ) ) |
| 8 |
1 7
|
mpbiri |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐵 · 𝐴 ) / 𝐵 ) = 𝐴 ) |