Metamath Proof Explorer
		
		
		
		Description:  A cancellation law for division.  (Eliminates a hypothesis of divcan3i with the weak deduction theorem.)  (Contributed by NM, 3-Feb-2004)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
				
					|  | Assertion | divcan3zi | ⊢  ( 𝐵  ≠  0  →  ( ( 𝐵  ·  𝐴 )  /  𝐵 )  =  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | divcan3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( ( 𝐵  ·  𝐴 )  /  𝐵 )  =  𝐴 ) | 
						
							| 4 | 1 2 3 | mp3an12 | ⊢ ( 𝐵  ≠  0  →  ( ( 𝐵  ·  𝐴 )  /  𝐵 )  =  𝐴 ) |