| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divcan8d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | divcan8d.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | divcan8d.a0 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 4 |  | divcan8d.b0 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 5 | 1 2 | mulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ∈  ℂ ) | 
						
							| 6 | 1 2 3 4 | mulne0d | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ≠  0 ) | 
						
							| 7 | 1 2 6 | mulne0bbd | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 8 | 2 5 2 6 7 | divcan7d | ⊢ ( 𝜑  →  ( ( 𝐵  /  𝐵 )  /  ( ( 𝐴  ·  𝐵 )  /  𝐵 ) )  =  ( 𝐵  /  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝜑  →  ( 𝐵  /  ( 𝐴  ·  𝐵 ) )  =  ( ( 𝐵  /  𝐵 )  /  ( ( 𝐴  ·  𝐵 )  /  𝐵 ) ) ) | 
						
							| 10 | 2 4 | dividd | ⊢ ( 𝜑  →  ( 𝐵  /  𝐵 )  =  1 ) | 
						
							| 11 | 1 2 4 | divcan4d | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  /  𝐵 )  =  𝐴 ) | 
						
							| 12 | 10 11 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐵  /  𝐵 )  /  ( ( 𝐴  ·  𝐵 )  /  𝐵 ) )  =  ( 1  /  𝐴 ) ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝜑  →  ( 1  /  𝐴 )  =  ( 1  /  𝐴 ) ) | 
						
							| 14 | 9 12 13 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐵  /  ( 𝐴  ·  𝐵 ) )  =  ( 1  /  𝐴 ) ) |