Description: Closure law for division. (Contributed by NM, 21-Jul-2001) (Proof shortened by Mario Carneiro, 17-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) | |
2 | receu | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) | |
3 | riotacl | ⊢ ( ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 → ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ∈ ℂ ) | |
4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ∈ ℂ ) |
5 | 1 4 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |