Description: Closure law for division. (Contributed by NM, 21-Jul-2001) (Proof shortened by Mario Carneiro, 17-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) | |
| 2 | receu | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) | |
| 3 | riotacl | ⊢ ( ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 → ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ∈ ℂ ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ∈ ℂ ) |
| 5 | 1 4 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |