Metamath Proof Explorer


Theorem divcl

Description: Closure law for division. (Contributed by NM, 21-Jul-2001) (Proof shortened by Mario Carneiro, 17-Feb-2014)

Ref Expression
Assertion divcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 divval ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) )
2 receu ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 )
3 riotacl ( ∃! 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 → ( 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ∈ ℂ )
4 2 3 syl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ∈ ℂ )
5 1 4 eqeltrd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ )