Metamath Proof Explorer


Theorem divcli

Description: Closure law for division. (Contributed by NM, 2-Feb-1995) (Revised by Mario Carneiro, 17-Feb-2014)

Ref Expression
Hypotheses divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divcl.3 𝐵 ≠ 0
Assertion divcli ( 𝐴 / 𝐵 ) ∈ ℂ

Proof

Step Hyp Ref Expression
1 divclz.1 𝐴 ∈ ℂ
2 divclz.2 𝐵 ∈ ℂ
3 divcl.3 𝐵 ≠ 0
4 1 2 divclzi ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) ∈ ℂ )
5 3 4 ax-mp ( 𝐴 / 𝐵 ) ∈ ℂ