Metamath Proof Explorer


Theorem divclzi

Description: Closure law for division. (Contributed by NM, 7-May-1999) (Revised by Mario Carneiro, 17-Feb-2014)

Ref Expression
Hypotheses divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
Assertion divclzi ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 divclz.1 𝐴 ∈ ℂ
2 divclz.2 𝐵 ∈ ℂ
3 divcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ )
4 1 2 3 mp3an12 ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) ∈ ℂ )