| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpomulcn.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
| 2 |
|
divcn.k |
⊢ 𝐾 = ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) |
| 3 |
|
df-div |
⊢ / = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) |
| 4 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
| 5 |
|
divval |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 𝑥 / 𝑦 ) = ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) |
| 6 |
|
divrec |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 𝑥 / 𝑦 ) = ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 7 |
5 6
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) = ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 8 |
7
|
3expb |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) = ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 9 |
4 8
|
sylan2b |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) = ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 10 |
9
|
mpoeq3ia |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 11 |
3 10
|
eqtri |
⊢ / = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 12 |
1
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 13 |
12
|
a1i |
⊢ ( ⊤ → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 14 |
|
difss |
⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ |
| 15 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) |
| 16 |
13 14 15
|
sylancl |
⊢ ( ⊤ → ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) |
| 17 |
2 16
|
eqeltrid |
⊢ ( ⊤ → 𝐾 ∈ ( TopOn ‘ ( ℂ ∖ { 0 } ) ) ) |
| 18 |
13 17
|
cnmpt1st |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 19 |
13 17
|
cnmpt2nd |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
| 20 |
|
eqid |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) = ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) |
| 21 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ∈ ℂ ) |
| 22 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ≠ 0 ) |
| 23 |
21 22
|
reccld |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( 1 / 𝑧 ) ∈ ℂ ) |
| 24 |
20 23
|
fmpti |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ |
| 25 |
|
eqid |
⊢ ( if ( 1 ≤ ( ( abs ‘ 𝑥 ) · 𝑤 ) , 1 , ( ( abs ‘ 𝑥 ) · 𝑤 ) ) · ( ( abs ‘ 𝑥 ) / 2 ) ) = ( if ( 1 ≤ ( ( abs ‘ 𝑥 ) · 𝑤 ) , 1 , ( ( abs ‘ 𝑥 ) · 𝑤 ) ) · ( ( abs ‘ 𝑥 ) / 2 ) ) |
| 26 |
25
|
reccn2 |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 → ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) |
| 27 |
|
ovres |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) = ( 𝑥 ( abs ∘ − ) 𝑦 ) ) |
| 28 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → 𝑥 ∈ ℂ ) |
| 29 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ∈ ℂ ) |
| 30 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 31 |
30
|
cnmetdval |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 32 |
|
abssub |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 33 |
31 32
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 34 |
28 29 33
|
syl2an |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( abs ∘ − ) 𝑦 ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 35 |
27 34
|
eqtrd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 36 |
35
|
breq1d |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 ↔ ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 ) ) |
| 37 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 1 / 𝑧 ) = ( 1 / 𝑥 ) ) |
| 38 |
|
ovex |
⊢ ( 1 / 𝑥 ) ∈ V |
| 39 |
37 20 38
|
fvmpt |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) = ( 1 / 𝑥 ) ) |
| 40 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 1 / 𝑧 ) = ( 1 / 𝑦 ) ) |
| 41 |
|
ovex |
⊢ ( 1 / 𝑦 ) ∈ V |
| 42 |
40 20 41
|
fvmpt |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) = ( 1 / 𝑦 ) ) |
| 43 |
39 42
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) = ( ( 1 / 𝑥 ) ( abs ∘ − ) ( 1 / 𝑦 ) ) ) |
| 44 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → 𝑥 ≠ 0 ) |
| 45 |
28 44
|
reccld |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 46 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 ) |
| 47 |
29 46
|
reccld |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( 1 / 𝑦 ) ∈ ℂ ) |
| 48 |
30
|
cnmetdval |
⊢ ( ( ( 1 / 𝑥 ) ∈ ℂ ∧ ( 1 / 𝑦 ) ∈ ℂ ) → ( ( 1 / 𝑥 ) ( abs ∘ − ) ( 1 / 𝑦 ) ) = ( abs ‘ ( ( 1 / 𝑥 ) − ( 1 / 𝑦 ) ) ) ) |
| 49 |
|
abssub |
⊢ ( ( ( 1 / 𝑥 ) ∈ ℂ ∧ ( 1 / 𝑦 ) ∈ ℂ ) → ( abs ‘ ( ( 1 / 𝑥 ) − ( 1 / 𝑦 ) ) ) = ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) ) |
| 50 |
48 49
|
eqtrd |
⊢ ( ( ( 1 / 𝑥 ) ∈ ℂ ∧ ( 1 / 𝑦 ) ∈ ℂ ) → ( ( 1 / 𝑥 ) ( abs ∘ − ) ( 1 / 𝑦 ) ) = ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) ) |
| 51 |
45 47 50
|
syl2an |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 1 / 𝑥 ) ( abs ∘ − ) ( 1 / 𝑦 ) ) = ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) ) |
| 52 |
43 51
|
eqtrd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) = ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) ) |
| 53 |
52
|
breq1d |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ↔ ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) |
| 54 |
36 53
|
imbi12d |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 → ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) ) |
| 55 |
54
|
ralbidva |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → ( ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ↔ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 → ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) ) |
| 56 |
55
|
rexbidv |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) → ( ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ↔ ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 → ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑤 ∈ ℝ+ ) → ( ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ↔ ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑦 − 𝑥 ) ) < 𝑎 → ( abs ‘ ( ( 1 / 𝑦 ) − ( 1 / 𝑥 ) ) ) < 𝑤 ) ) ) |
| 58 |
26 57
|
mpbird |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ) |
| 59 |
58
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑤 ∈ ℝ+ ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) |
| 60 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 61 |
|
xmetres2 |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ∈ ( ∞Met ‘ ( ℂ ∖ { 0 } ) ) ) |
| 62 |
60 14 61
|
mp2an |
⊢ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ∈ ( ∞Met ‘ ( ℂ ∖ { 0 } ) ) |
| 63 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) = ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) |
| 64 |
1
|
cnfldtopn |
⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 65 |
|
eqid |
⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ) |
| 66 |
63 64 65
|
metrest |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ) ) |
| 67 |
60 14 66
|
mp2an |
⊢ ( 𝐽 ↾t ( ℂ ∖ { 0 } ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ) |
| 68 |
2 67
|
eqtri |
⊢ 𝐾 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ) |
| 69 |
68 64
|
metcn |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) ∈ ( ∞Met ‘ ( ℂ ∖ { 0 } ) ) ∧ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ↔ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑤 ∈ ℝ+ ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ) ) ) |
| 70 |
62 60 69
|
mp2an |
⊢ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ↔ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑤 ∈ ℝ+ ∃ 𝑎 ∈ ℝ+ ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑥 ( ( abs ∘ − ) ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) < 𝑎 → ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑥 ) ( abs ∘ − ) ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ‘ 𝑦 ) ) < 𝑤 ) ) ) |
| 71 |
24 59 70
|
mpbir2an |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) |
| 72 |
71
|
a1i |
⊢ ( ⊤ → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑧 ) ) ∈ ( 𝐾 Cn 𝐽 ) ) |
| 73 |
13 17 19 17 72 40
|
cnmpt21 |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 74 |
1
|
mpomulcn |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 75 |
74
|
a1i |
⊢ ( ⊤ → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 76 |
|
oveq12 |
⊢ ( ( 𝑢 = 𝑥 ∧ 𝑣 = ( 1 / 𝑦 ) ) → ( 𝑢 · 𝑣 ) = ( 𝑥 · ( 1 / 𝑦 ) ) ) |
| 77 |
13 17 18 73 13 13 75 76
|
cnmpt22 |
⊢ ( ⊤ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · ( 1 / 𝑦 ) ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
| 78 |
77
|
mptru |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · ( 1 / 𝑦 ) ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) |
| 79 |
11 78
|
eqeltri |
⊢ / ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) |