Step |
Hyp |
Ref |
Expression |
1 |
|
divcncf.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
2 |
|
divcncf.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ( ℂ ∖ { 0 } ) ) ) |
3 |
|
cncff |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝑋 –cn→ ℂ ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
5 |
4
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
6 |
|
cncff |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ( ℂ ∖ { 0 } ) ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ( ℂ ∖ { 0 } ) ) |
8 |
7
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
9 |
8
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
10 |
|
eldifsni |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 } ) → 𝐵 ≠ 0 ) |
11 |
8 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ≠ 0 ) |
12 |
5 9 11
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
13 |
12
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( 1 / 𝐵 ) ) ) ) |
14 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
15 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
16 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ) |
17 |
14 15 16
|
fmptcos |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝐵 / 𝑦 ⦌ ( 1 / 𝑦 ) ) ) |
18 |
|
csbov2g |
⊢ ( 𝐵 ∈ ℂ → ⦋ 𝐵 / 𝑦 ⦌ ( 1 / 𝑦 ) = ( 1 / ⦋ 𝐵 / 𝑦 ⦌ 𝑦 ) ) |
19 |
9 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝐵 / 𝑦 ⦌ ( 1 / 𝑦 ) = ( 1 / ⦋ 𝐵 / 𝑦 ⦌ 𝑦 ) ) |
20 |
|
csbvarg |
⊢ ( 𝐵 ∈ ℂ → ⦋ 𝐵 / 𝑦 ⦌ 𝑦 = 𝐵 ) |
21 |
9 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝐵 / 𝑦 ⦌ 𝑦 = 𝐵 ) |
22 |
21
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 1 / ⦋ 𝐵 / 𝑦 ⦌ 𝑦 ) = ( 1 / 𝐵 ) ) |
23 |
19 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝐵 / 𝑦 ⦌ ( 1 / 𝑦 ) = ( 1 / 𝐵 ) ) |
24 |
23
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝐵 / 𝑦 ⦌ ( 1 / 𝑦 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 1 / 𝐵 ) ) ) |
25 |
17 24
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 1 / 𝐵 ) ) = ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ) |
26 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
27 |
|
eqid |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) |
28 |
27
|
cdivcncf |
⊢ ( 1 ∈ ℂ → ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |
29 |
26 28
|
mp1i |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ∈ ( ( ℂ ∖ { 0 } ) –cn→ ℂ ) ) |
30 |
2 29
|
cncfco |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑦 ) ) ∘ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
31 |
25 30
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 1 / 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
32 |
1 31
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( 1 / 𝐵 ) ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
33 |
13 32
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |