Step |
Hyp |
Ref |
Expression |
1 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
2 |
1
|
ssriv |
⊢ ℕ ⊆ ℝ+ |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ℕ ⊆ ℝ+ ) |
4 |
|
divrcnv |
⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℝ+ ↦ ( 𝐴 / 𝑛 ) ) ⇝𝑟 0 ) |
5 |
3 4
|
rlimres2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 𝐴 / 𝑛 ) ) ⇝𝑟 0 ) |
6 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
7 |
|
1zzd |
⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℤ ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
9 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
11 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
13 |
8 10 12
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ( 𝐴 / 𝑛 ) ∈ ℂ ) |
14 |
13
|
fmpttd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 𝐴 / 𝑛 ) ) : ℕ ⟶ ℂ ) |
15 |
6 7 14
|
rlimclim |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑛 ∈ ℕ ↦ ( 𝐴 / 𝑛 ) ) ⇝𝑟 0 ↔ ( 𝑛 ∈ ℕ ↦ ( 𝐴 / 𝑛 ) ) ⇝ 0 ) ) |
16 |
5 15
|
mpbid |
⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 𝐴 / 𝑛 ) ) ⇝ 0 ) |