| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eluznn | 
							⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑛  ∈  ℕ )  | 
						
						
							| 2 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑛  ∈  ℕ  →  ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  𝑛  →  ( 𝐴  /  𝑚 )  =  ( 𝐴  /  𝑛 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  =  𝑛 )  →  ( 𝐴  /  𝑚 )  =  ( 𝐴  /  𝑛 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							id | 
							⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ )  | 
						
						
							| 6 | 
							
								
							 | 
							ovexd | 
							⊢ ( 𝑛  ∈  ℕ  →  ( 𝐴  /  𝑛 )  ∈  V )  | 
						
						
							| 7 | 
							
								2 4 5 6
							 | 
							fvmptd | 
							⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) ) ‘ 𝑛 )  =  ( 𝐴  /  𝑛 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqcomd | 
							⊢ ( 𝑛  ∈  ℕ  →  ( 𝐴  /  𝑛 )  =  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) ) ‘ 𝑛 ) )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							syl | 
							⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴  /  𝑛 )  =  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) ) ‘ 𝑛 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantll | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑀  ∈  ℕ )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴  /  𝑛 )  =  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) ) ‘ 𝑛 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							mpteq2dva | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑀  ∈  ℕ )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐴  /  𝑛 ) )  =  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) ) ‘ 𝑛 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							divcnv | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) )  ⇝  0 )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑀  ∈  ℕ )  →  ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) )  ⇝  0 )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ℕ )  | 
						
						
							| 15 | 
							
								14
							 | 
							nnzd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ℤ )  | 
						
						
							| 16 | 
							
								
							 | 
							nnex | 
							⊢ ℕ  ∈  V  | 
						
						
							| 17 | 
							
								16
							 | 
							mptex | 
							⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) )  ∈  V  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( ℤ≥ ‘ 𝑀 )  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) ) ‘ 𝑛 ) )  =  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) ) ‘ 𝑛 ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							climmpt | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) )  ∈  V )  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) )  ⇝  0  ↔  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) ) ‘ 𝑛 ) )  ⇝  0 ) )  | 
						
						
							| 21 | 
							
								15 17 20
							 | 
							sylancl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑀  ∈  ℕ )  →  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) )  ⇝  0  ↔  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) ) ‘ 𝑛 ) )  ⇝  0 ) )  | 
						
						
							| 22 | 
							
								13 21
							 | 
							mpbid | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑀  ∈  ℕ )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( ( 𝑚  ∈  ℕ  ↦  ( 𝐴  /  𝑚 ) ) ‘ 𝑛 ) )  ⇝  0 )  | 
						
						
							| 23 | 
							
								11 22
							 | 
							eqbrtrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑀  ∈  ℕ )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ↦  ( 𝐴  /  𝑛 ) )  ⇝  0 )  |