Metamath Proof Explorer


Theorem divcnvshft

Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Hypotheses divcnvshft.1 𝑍 = ( ℤ𝑀 )
divcnvshft.2 ( 𝜑𝑀 ∈ ℤ )
divcnvshft.3 ( 𝜑𝐴 ∈ ℂ )
divcnvshft.4 ( 𝜑𝐵 ∈ ℤ )
divcnvshft.5 ( 𝜑𝐹𝑉 )
divcnvshft.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) )
Assertion divcnvshft ( 𝜑𝐹 ⇝ 0 )

Proof

Step Hyp Ref Expression
1 divcnvshft.1 𝑍 = ( ℤ𝑀 )
2 divcnvshft.2 ( 𝜑𝑀 ∈ ℤ )
3 divcnvshft.3 ( 𝜑𝐴 ∈ ℂ )
4 divcnvshft.4 ( 𝜑𝐵 ∈ ℤ )
5 divcnvshft.5 ( 𝜑𝐹𝑉 )
6 divcnvshft.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) )
7 divcnv ( 𝐴 ∈ ℂ → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 )
8 3 7 syl ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 )
9 nnssz ℕ ⊆ ℤ
10 resmpt ( ℕ ⊆ ℤ → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) )
11 9 10 ax-mp ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) )
12 nnuz ℕ = ( ℤ ‘ 1 )
13 12 reseq2i ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ℕ ) = ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ ‘ 1 ) )
14 11 13 eqtr3i ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) = ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ ‘ 1 ) )
15 14 breq1i ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ↔ ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ ‘ 1 ) ) ⇝ 0 )
16 1z 1 ∈ ℤ
17 zex ℤ ∈ V
18 17 mptex ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ∈ V
19 climres ( ( 1 ∈ ℤ ∧ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ∈ V ) → ( ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ ‘ 1 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) )
20 16 18 19 mp2an ( ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ ‘ 1 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 )
21 15 20 bitri ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 )
22 8 21 sylib ( 𝜑 → ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 )
23 18 a1i ( 𝜑 → ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ∈ V )
24 uzssz ( ℤ𝑀 ) ⊆ ℤ
25 1 24 eqsstri 𝑍 ⊆ ℤ
26 25 sseli ( 𝑘𝑍𝑘 ∈ ℤ )
27 26 adantl ( ( 𝜑𝑘𝑍 ) → 𝑘 ∈ ℤ )
28 4 adantr ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℤ )
29 27 28 zaddcld ( ( 𝜑𝑘𝑍 ) → ( 𝑘 + 𝐵 ) ∈ ℤ )
30 oveq2 ( 𝑚 = ( 𝑘 + 𝐵 ) → ( 𝐴 / 𝑚 ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) )
31 eqid ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) = ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) )
32 ovex ( 𝐴 / ( 𝑘 + 𝐵 ) ) ∈ V
33 30 31 32 fvmpt ( ( 𝑘 + 𝐵 ) ∈ ℤ → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) )
34 29 33 syl ( ( 𝜑𝑘𝑍 ) → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) )
35 34 6 eqtr4d ( ( 𝜑𝑘𝑍 ) → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( 𝐹𝑘 ) )
36 1 2 4 5 23 35 climshft2 ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) )
37 22 36 mpbird ( 𝜑𝐹 ⇝ 0 )