Step |
Hyp |
Ref |
Expression |
1 |
|
divcnvshft.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
divcnvshft.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
divcnvshft.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
4 |
|
divcnvshft.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
5 |
|
divcnvshft.5 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
6 |
|
divcnvshft.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) ) |
7 |
|
divcnv |
⊢ ( 𝐴 ∈ ℂ → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
9 |
|
nnssz |
⊢ ℕ ⊆ ℤ |
10 |
|
resmpt |
⊢ ( ℕ ⊆ ℤ → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ) |
11 |
9 10
|
ax-mp |
⊢ ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ℕ ) = ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) |
12 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
13 |
12
|
reseq2i |
⊢ ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ℕ ) = ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) |
14 |
11 13
|
eqtr3i |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) = ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) |
15 |
14
|
breq1i |
⊢ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ↔ ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 0 ) |
16 |
|
1z |
⊢ 1 ∈ ℤ |
17 |
|
zex |
⊢ ℤ ∈ V |
18 |
17
|
mptex |
⊢ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ∈ V |
19 |
|
climres |
⊢ ( ( 1 ∈ ℤ ∧ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ∈ V ) → ( ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) ) |
20 |
16 18 19
|
mp2an |
⊢ ( ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
21 |
15 20
|
bitri |
⊢ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
22 |
8 21
|
sylib |
⊢ ( 𝜑 → ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
23 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ∈ V ) |
24 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
25 |
1 24
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
26 |
25
|
sseli |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℤ ) |
28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℤ ) |
29 |
27 28
|
zaddcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 + 𝐵 ) ∈ ℤ ) |
30 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑘 + 𝐵 ) → ( 𝐴 / 𝑚 ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) ) |
31 |
|
eqid |
⊢ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) = ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) |
32 |
|
ovex |
⊢ ( 𝐴 / ( 𝑘 + 𝐵 ) ) ∈ V |
33 |
30 31 32
|
fvmpt |
⊢ ( ( 𝑘 + 𝐵 ) ∈ ℤ → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) ) |
34 |
29 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( 𝐴 / ( 𝑘 + 𝐵 ) ) ) |
35 |
34 6
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ‘ ( 𝑘 + 𝐵 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
36 |
1 2 4 5 23 35
|
climshft2 |
⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ( 𝑚 ∈ ℤ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) ) |
37 |
22 36
|
mpbird |
⊢ ( 𝜑 → 𝐹 ⇝ 0 ) |