Step |
Hyp |
Ref |
Expression |
1 |
|
divnumden |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( numer ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
2 |
1
|
simprd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
4 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
6 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
7 |
6
|
neneqd |
⊢ ( 𝐵 ∈ ℕ → ¬ 𝐵 = 0 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ¬ 𝐵 = 0 ) |
9 |
8
|
intnand |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
10 |
|
gcdn0cl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
11 |
3 5 9 10
|
syl21anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
12 |
11
|
nnge1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 1 ≤ ( 𝐴 gcd 𝐵 ) ) |
13 |
|
1red |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 1 ∈ ℝ ) |
14 |
|
0lt1 |
⊢ 0 < 1 |
15 |
14
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 0 < 1 ) |
16 |
11
|
nnred |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℝ ) |
17 |
11
|
nngt0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 0 < ( 𝐴 gcd 𝐵 ) ) |
18 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
20 |
|
nngt0 |
⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) |
21 |
20
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 0 < 𝐵 ) |
22 |
|
lediv2 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 gcd 𝐵 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 ≤ ( 𝐴 gcd 𝐵 ) ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝐵 / 1 ) ) ) |
23 |
13 15 16 17 19 21 22
|
syl222anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 1 ≤ ( 𝐴 gcd 𝐵 ) ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝐵 / 1 ) ) ) |
24 |
12 23
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝐵 / 1 ) ) |
25 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
26 |
25
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
27 |
26
|
div1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / 1 ) = 𝐵 ) |
28 |
24 27
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ≤ 𝐵 ) |
29 |
2 28
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( denom ‘ ( 𝐴 / 𝐵 ) ) ≤ 𝐵 ) |