Step |
Hyp |
Ref |
Expression |
1 |
|
reccl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
2 |
|
div23 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 / 𝐵 ) ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · ( 1 / 𝐵 ) ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) · ( 1 / 𝐵 ) ) ) |
3 |
1 2
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · ( 1 / 𝐵 ) ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) · ( 1 / 𝐵 ) ) ) |
4 |
|
divrec |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
5 |
4
|
3expb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
7 |
6
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( ( 𝐴 · ( 1 / 𝐵 ) ) / 𝐶 ) ) |
8 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
9 |
8
|
3expb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
10 |
|
divrec |
⊢ ( ( ( 𝐴 / 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐶 ) / 𝐵 ) = ( ( 𝐴 / 𝐶 ) · ( 1 / 𝐵 ) ) ) |
11 |
9 10
|
syl3an1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐶 ) / 𝐵 ) = ( ( 𝐴 / 𝐶 ) · ( 1 / 𝐵 ) ) ) |
12 |
11
|
3expb |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) / 𝐵 ) = ( ( 𝐴 / 𝐶 ) · ( 1 / 𝐵 ) ) ) |
13 |
12
|
3impa |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) / 𝐵 ) = ( ( 𝐴 / 𝐶 ) · ( 1 / 𝐵 ) ) ) |
14 |
13
|
3com23 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) / 𝐵 ) = ( ( 𝐴 / 𝐶 ) · ( 1 / 𝐵 ) ) ) |
15 |
3 7 14
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) / 𝐵 ) ) |