Step |
Hyp |
Ref |
Expression |
1 |
|
div1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
divcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
divmuld.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
divmuldivd.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
5 |
|
divmuldivd.5 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
6 |
|
divmuldivd.6 |
⊢ ( 𝜑 → 𝐷 ≠ 0 ) |
7 |
|
divdivdivd.7 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
8 |
2 5
|
jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
9 |
3 7
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) |
10 |
4 6
|
jca |
⊢ ( 𝜑 → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
11 |
|
divdivdiv |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐵 ) / ( 𝐶 / 𝐷 ) ) = ( ( 𝐴 · 𝐷 ) / ( 𝐵 · 𝐶 ) ) ) |
12 |
1 8 9 10 11
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) / ( 𝐶 / 𝐷 ) ) = ( ( 𝐴 · 𝐷 ) / ( 𝐵 · 𝐶 ) ) ) |