Metamath Proof Explorer
		
		
		
		Description:  Division of two ratios.  Theorem I.15 of Apostol p. 18.  (Contributed by NM, 22-Feb-1995)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | divmulz.3 | ⊢ 𝐶  ∈  ℂ | 
					
						|  |  | divmuldiv.4 | ⊢ 𝐷  ∈  ℂ | 
					
						|  |  | divmuldiv.5 | ⊢ 𝐵  ≠  0 | 
					
						|  |  | divmuldiv.6 | ⊢ 𝐷  ≠  0 | 
					
						|  |  | divdivdiv.7 | ⊢ 𝐶  ≠  0 | 
				
					|  | Assertion | divdivdivi | ⊢  ( ( 𝐴  /  𝐵 )  /  ( 𝐶  /  𝐷 ) )  =  ( ( 𝐴  ·  𝐷 )  /  ( 𝐵  ·  𝐶 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | divmulz.3 | ⊢ 𝐶  ∈  ℂ | 
						
							| 4 |  | divmuldiv.4 | ⊢ 𝐷  ∈  ℂ | 
						
							| 5 |  | divmuldiv.5 | ⊢ 𝐵  ≠  0 | 
						
							| 6 |  | divmuldiv.6 | ⊢ 𝐷  ≠  0 | 
						
							| 7 |  | divdivdiv.7 | ⊢ 𝐶  ≠  0 | 
						
							| 8 | 2 5 | pm3.2i | ⊢ ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) | 
						
							| 9 | 3 7 | pm3.2i | ⊢ ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 ) | 
						
							| 10 | 4 6 | pm3.2i | ⊢ ( 𝐷  ∈  ℂ  ∧  𝐷  ≠  0 ) | 
						
							| 11 |  | divdivdiv | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  ∧  ( ( 𝐶  ∈  ℂ  ∧  𝐶  ≠  0 )  ∧  ( 𝐷  ∈  ℂ  ∧  𝐷  ≠  0 ) ) )  →  ( ( 𝐴  /  𝐵 )  /  ( 𝐶  /  𝐷 ) )  =  ( ( 𝐴  ·  𝐷 )  /  ( 𝐵  ·  𝐶 ) ) ) | 
						
							| 12 | 1 8 9 10 11 | mp4an | ⊢ ( ( 𝐴  /  𝐵 )  /  ( 𝐶  /  𝐷 ) )  =  ( ( 𝐴  ·  𝐷 )  /  ( 𝐵  ·  𝐶 ) ) |