Step |
Hyp |
Ref |
Expression |
1 |
|
elicc01 |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ) |
2 |
|
df-3an |
⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ↔ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ) |
3 |
1 2
|
bitri |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ( 0 [,] 1 ) ↔ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ) |
4 |
|
1re |
⊢ 1 ∈ ℝ |
5 |
|
ledivmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ ( 𝐵 · 1 ) ) ) |
6 |
4 5
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ ( 𝐵 · 1 ) ) ) |
7 |
6
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ 𝐴 ≤ ( 𝐵 · 1 ) ) ) |
8 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℝ ) |
9 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ ) |
10 |
|
gt0ne0 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ≠ 0 ) |
12 |
8 9 11
|
redivcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
13 |
|
divge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
14 |
12 13
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) ) |
15 |
14
|
biantrurd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ≤ 1 ↔ ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ) ) |
16 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
17 |
16
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℂ ) |
18 |
17
|
mulid1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐵 · 1 ) = 𝐵 ) |
19 |
18
|
breq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ ( 𝐵 · 1 ) ↔ 𝐴 ≤ 𝐵 ) ) |
20 |
7 15 19
|
3bitr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝐵 ) ) ∧ ( 𝐴 / 𝐵 ) ≤ 1 ) ↔ 𝐴 ≤ 𝐵 ) ) |
21 |
3 20
|
syl5bb |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ∈ ( 0 [,] 1 ) ↔ 𝐴 ≤ 𝐵 ) ) |