Metamath Proof Explorer


Theorem diveq1bd

Description: If two complex numbers are equal, their quotient is one. One-way deduction form of diveq1 . Converse of diveq1d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses diveq1bd.1 ( 𝜑𝐵 ∈ ℂ )
diveq1bd.2 ( 𝜑𝐵 ≠ 0 )
diveq1bd.3 ( 𝜑𝐴 = 𝐵 )
Assertion diveq1bd ( 𝜑 → ( 𝐴 / 𝐵 ) = 1 )

Proof

Step Hyp Ref Expression
1 diveq1bd.1 ( 𝜑𝐵 ∈ ℂ )
2 diveq1bd.2 ( 𝜑𝐵 ≠ 0 )
3 diveq1bd.3 ( 𝜑𝐴 = 𝐵 )
4 3 1 eqeltrd ( 𝜑𝐴 ∈ ℂ )
5 4 1 2 diveq1ad ( 𝜑 → ( ( 𝐴 / 𝐵 ) = 1 ↔ 𝐴 = 𝐵 ) )
6 3 5 mpbird ( 𝜑 → ( 𝐴 / 𝐵 ) = 1 )