Step |
Hyp |
Ref |
Expression |
1 |
|
nn0nndivcl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
3 |
|
addid2 |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( 0 + ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) |
4 |
3
|
eqcomd |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( 𝐴 / 𝐵 ) = ( 0 + ( 𝐴 / 𝐵 ) ) ) |
5 |
2 4
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) = ( 0 + ( 𝐴 / 𝐵 ) ) ) |
6 |
5
|
fveqeq2d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = 0 ↔ ( ⌊ ‘ ( 0 + ( 𝐴 / 𝐵 ) ) ) = 0 ) ) |
7 |
|
0z |
⊢ 0 ∈ ℤ |
8 |
|
flbi2 |
⊢ ( ( 0 ∈ ℤ ∧ ( 𝐴 / 𝐵 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 0 + ( 𝐴 / 𝐵 ) ) ) = 0 ↔ ( 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) < 1 ) ) ) |
9 |
7 1 8
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( ⌊ ‘ ( 0 + ( 𝐴 / 𝐵 ) ) ) = 0 ↔ ( 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) < 1 ) ) ) |
10 |
|
nn0ge0div |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
11 |
10
|
biantrurd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) < 1 ↔ ( 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) < 1 ) ) ) |
12 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
13 |
|
nnrp |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) |
14 |
|
divlt1lt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) < 1 ↔ 𝐴 < 𝐵 ) ) |
15 |
12 13 14
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) < 1 ↔ 𝐴 < 𝐵 ) ) |
16 |
11 15
|
bitr3d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( ( 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) < 1 ) ↔ 𝐴 < 𝐵 ) ) |
17 |
6 9 16
|
3bitrrd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 < 𝐵 ↔ ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = 0 ) ) |