Step |
Hyp |
Ref |
Expression |
1 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
3 |
|
gcdcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
4 |
3
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
6 |
4 5
|
jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
8 |
|
divides |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑎 ∈ ℤ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑎 ∈ ℤ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) |
10 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
11 |
4 10
|
jca |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
13 |
|
divides |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) |
15 |
9 14
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ↔ ( ∃ 𝑎 ∈ ℤ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) ) |
16 |
|
bezout |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ) |
18 |
|
oveq1 |
⊢ ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) = ( 𝐴 · 𝑚 ) ) |
19 |
|
oveq1 |
⊢ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) = ( 𝐵 · 𝑛 ) ) |
20 |
18 19
|
oveqan12rd |
⊢ ( ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) → ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ) |
21 |
20
|
eqeq2d |
⊢ ( ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) → ( ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ) ) |
22 |
21
|
bicomd |
⊢ ( ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) ) ) |
23 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℤ ) |
24 |
23
|
zcnd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℂ ) |
25 |
24
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℂ ) |
26 |
3
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
27 |
26
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
29 |
|
simpl |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑚 ∈ ℤ ) |
30 |
29
|
zcnd |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑚 ∈ ℂ ) |
31 |
30
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑚 ∈ ℂ ) |
32 |
25 28 31
|
mul32d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) = ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) ) |
33 |
|
simpr |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℤ ) |
34 |
33
|
zcnd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
35 |
34
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑏 ∈ ℂ ) |
36 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) |
37 |
36
|
zcnd |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℂ ) |
38 |
37
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑛 ∈ ℂ ) |
39 |
35 28 38
|
mul32d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) = ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) |
40 |
32 39
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) = ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ) |
41 |
40
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ) ) |
42 |
23
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℤ ) |
43 |
29
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑚 ∈ ℤ ) |
44 |
42 43
|
zmulcld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 · 𝑚 ) ∈ ℤ ) |
45 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
47 |
44 46
|
zmulcld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
48 |
33
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑏 ∈ ℤ ) |
49 |
36
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝑛 ∈ ℤ ) |
50 |
48 49
|
zmulcld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑏 · 𝑛 ) ∈ ℤ ) |
51 |
3
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
52 |
51
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
53 |
52
|
nn0zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
54 |
50 53
|
zmulcld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
55 |
47 54
|
zaddcld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ∈ ℤ ) |
56 |
55
|
zcnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ∈ ℂ ) |
57 |
|
gcd2n0cl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
58 |
|
nnrp |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( 𝐴 gcd 𝐵 ) ∈ ℝ+ ) |
59 |
58
|
rpcnne0d |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) |
60 |
57 59
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) |
61 |
60
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) |
62 |
|
div11 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ) ) |
63 |
28 56 61 62
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) ) ) |
64 |
|
divid |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) |
65 |
61 64
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) |
66 |
47
|
zcnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℂ ) |
67 |
54
|
zcnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℂ ) |
68 |
|
divdir |
⊢ ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℂ ∧ ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) = ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) + ( ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) ) ) |
69 |
66 67 61 68
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) = ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) + ( ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) ) ) |
70 |
44
|
zcnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 · 𝑚 ) ∈ ℂ ) |
71 |
51
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
73 |
57
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
74 |
73
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
75 |
70 72 74
|
divcan4d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) = ( 𝑎 · 𝑚 ) ) |
76 |
50
|
zcnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑏 · 𝑛 ) ∈ ℂ ) |
77 |
76 28 74
|
divcan4d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) = ( 𝑏 · 𝑛 ) ) |
78 |
75 77
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) + ( ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ) |
79 |
69 78
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ) |
80 |
65 79
|
eqeq12d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( ( ( 𝑎 · 𝑚 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑏 · 𝑛 ) · ( 𝐴 gcd 𝐵 ) ) ) / ( 𝐴 gcd 𝐵 ) ) ↔ 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ) ) |
81 |
41 63 80
|
3bitr2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) · 𝑚 ) + ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) · 𝑛 ) ) ↔ 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ) ) |
82 |
22 81
|
sylan9bbr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) ↔ 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ) ) |
83 |
|
eqcom |
⊢ ( 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) ↔ ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) = 1 ) |
84 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
85 |
84
|
anim1ci |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ) |
86 |
|
bezoutr1 |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) = 1 → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
87 |
85 86
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) = 1 → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
88 |
87
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) = 1 → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
89 |
83 88
|
syl5bi |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
90 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝐴 ∈ ℤ ) |
91 |
90
|
zcnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝐴 ∈ ℂ ) |
92 |
|
divmul3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ↔ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) ) |
93 |
91 25 61 92
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ↔ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) ) |
94 |
|
eqcom |
⊢ ( 𝑎 = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ) |
95 |
|
eqcom |
⊢ ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ↔ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) |
96 |
93 94 95
|
3bitr4g |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) |
97 |
96
|
biimprd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → 𝑎 = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) |
98 |
97
|
a1d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → 𝑎 = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
99 |
98
|
imp32 |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → 𝑎 = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) |
100 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℤ ) |
101 |
100
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
102 |
101
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → 𝐵 ∈ ℂ ) |
103 |
|
divmul3 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ↔ 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) ) |
104 |
102 35 61 103
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ↔ 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) ) |
105 |
|
eqcom |
⊢ ( 𝑏 = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) |
106 |
|
eqcom |
⊢ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ↔ 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) |
107 |
104 105 106
|
3bitr4g |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑏 = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) |
108 |
107
|
biimprd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → 𝑏 = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
109 |
108
|
a1dd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → 𝑏 = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
110 |
109
|
imp32 |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → 𝑏 = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
111 |
99 110
|
oveq12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( 𝑎 gcd 𝑏 ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
112 |
111
|
eqeq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( ( 𝑎 gcd 𝑏 ) = 1 ↔ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) |
113 |
89 112
|
sylibd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( 1 = ( ( 𝑎 · 𝑚 ) + ( 𝑏 · 𝑛 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) |
114 |
82 113
|
sylbid |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) ∧ ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ∧ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) |
115 |
114
|
exp32 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) |
116 |
115
|
com34 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) |
117 |
116
|
com23 |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) |
118 |
117
|
ex |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) ) |
119 |
118
|
com23 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) ) |
120 |
119
|
rexlimdvva |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝐴 gcd 𝐵 ) = ( ( 𝐴 · 𝑚 ) + ( 𝐵 · 𝑛 ) ) → ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) ) |
121 |
17 120
|
mpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) ) |
122 |
121
|
impl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) |
123 |
122
|
rexlimdva |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑎 ∈ ℤ ) → ( ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) |
124 |
123
|
com23 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑎 ∈ ℤ ) → ( ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) |
125 |
124
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑎 ∈ ℤ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) ) |
126 |
125
|
impd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( ∃ 𝑎 ∈ ℤ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) |
127 |
15 126
|
sylbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) ) |
128 |
2 127
|
mpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |