Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℤ ) |
2 |
1
|
anim2i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
3 |
|
zeqzmulgcd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) |
6 |
|
zeqzmulgcd |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
7 |
6
|
adantlr |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ∈ ℤ ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
8 |
7
|
ancoms |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
10 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ↔ ( ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) |
11 |
|
zcn |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → 𝑎 ∈ ℂ ) |
13 |
|
gcdcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
14 |
2 13
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
15 |
14
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
16 |
15
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
18 |
12 17
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 gcd 𝐵 ) · 𝑎 ) ) |
19 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝑀 = ( 𝐴 gcd 𝐵 ) ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) = 𝑀 ) |
21 |
20
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) · 𝑎 ) = ( 𝑀 · 𝑎 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) · 𝑎 ) = ( 𝑀 · 𝑎 ) ) |
23 |
18 22
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) |
25 |
|
eqeq1 |
⊢ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ↔ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ↔ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) ) |
27 |
26
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ↔ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) ) |
28 |
24 27
|
mpbird |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → 𝐴 = ( 𝑀 · 𝑎 ) ) |
29 |
|
simpr |
⊢ ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
30 |
2
|
ancomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
31 |
|
gcdcom |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐵 gcd 𝐴 ) = ( 𝐴 gcd 𝐵 ) ) |
32 |
30 31
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐵 gcd 𝐴 ) = ( 𝐴 gcd 𝐵 ) ) |
33 |
32
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐵 gcd 𝐴 ) = ( 𝐴 gcd 𝐵 ) ) |
34 |
33
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) |
36 |
|
zcn |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
38 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
40 |
39
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
41 |
37 40
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 gcd 𝐵 ) · 𝑏 ) ) |
42 |
20
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = 𝑀 ) |
43 |
42
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) · 𝑏 ) = ( 𝑀 · 𝑏 ) ) |
44 |
35 41 43
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑀 · 𝑏 ) ) |
45 |
44
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑀 · 𝑏 ) ) |
46 |
29 45
|
sylan9eqr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → 𝐵 = ( 𝑀 · 𝑏 ) ) |
47 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
48 |
47
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐴 ∈ ℂ ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
50 |
12
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℂ ) |
51 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐴 ∈ ℤ ) |
52 |
1
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐵 ∈ ℤ ) |
53 |
51 52
|
gcdcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
54 |
53
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
56 |
|
gcdeq0 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
57 |
|
simpr |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
58 |
56 57
|
syl6bi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 0 → 𝐵 = 0 ) ) |
59 |
58
|
necon3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≠ 0 → ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) |
60 |
59
|
impr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
61 |
60
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
62 |
61
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
63 |
49 50 55 62
|
divmul3d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ↔ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) ) |
64 |
63
|
bicomd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ) ) |
65 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
66 |
65
|
adantr |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
67 |
66
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐵 ∈ ℂ ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
69 |
36
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
70 |
68 69 55 62
|
divmul3d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ↔ 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) ) |
71 |
2
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
72 |
|
gcdcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
73 |
71 72
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
74 |
73
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
75 |
74
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
76 |
75
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ↔ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) |
77 |
70 76
|
bitr2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) ) |
78 |
64 77
|
anbi12d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ↔ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) ) ) |
79 |
|
3anass |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ↔ ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) ) |
80 |
79
|
biimpri |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) |
81 |
80
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) |
82 |
|
divgcdcoprm0 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
83 |
81 82
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
84 |
|
oveq12 |
⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = ( 𝑎 gcd 𝑏 ) ) |
85 |
84
|
eqeq1d |
⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ↔ ( 𝑎 gcd 𝑏 ) = 1 ) ) |
86 |
83 85
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
87 |
86
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
88 |
78 87
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
89 |
88
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝑎 gcd 𝑏 ) = 1 ) |
90 |
28 46 89
|
3jca |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) |
91 |
90
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
92 |
91
|
reximdva |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
93 |
92
|
reximdva |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
94 |
10 93
|
syl5bir |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
95 |
5 9 94
|
mp2and |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) |