| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℤ ) |
| 2 |
1
|
anim2i |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 3 |
|
zeqzmulgcd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) |
| 5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) |
| 6 |
|
zeqzmulgcd |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
| 7 |
6
|
adantlr |
⊢ ( ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ∈ ℤ ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
| 8 |
7
|
ancoms |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
| 9 |
8
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
| 10 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ↔ ( ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) |
| 11 |
|
zcn |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → 𝑎 ∈ ℂ ) |
| 13 |
|
gcdcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 14 |
2 13
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 15 |
14
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 16 |
15
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 18 |
12 17
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 gcd 𝐵 ) · 𝑎 ) ) |
| 19 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝑀 = ( 𝐴 gcd 𝐵 ) ) |
| 20 |
19
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) = 𝑀 ) |
| 21 |
20
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) · 𝑎 ) = ( 𝑀 · 𝑎 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) · 𝑎 ) = ( 𝑀 · 𝑎 ) ) |
| 23 |
18 22
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) |
| 25 |
|
eqeq1 |
⊢ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ↔ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ↔ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) ) |
| 27 |
26
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ↔ ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑀 · 𝑎 ) ) ) |
| 28 |
24 27
|
mpbird |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → 𝐴 = ( 𝑀 · 𝑎 ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
| 30 |
2
|
ancomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
| 31 |
|
gcdcom |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐵 gcd 𝐴 ) = ( 𝐴 gcd 𝐵 ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐵 gcd 𝐴 ) = ( 𝐴 gcd 𝐵 ) ) |
| 33 |
32
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐵 gcd 𝐴 ) = ( 𝐴 gcd 𝐵 ) ) |
| 34 |
33
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) |
| 36 |
|
zcn |
⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) |
| 37 |
36
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
| 38 |
14
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 39 |
38
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 40 |
39
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 41 |
37 40
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 gcd 𝐵 ) · 𝑏 ) ) |
| 42 |
20
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = 𝑀 ) |
| 43 |
42
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) · 𝑏 ) = ( 𝑀 · 𝑏 ) ) |
| 44 |
35 41 43
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑀 · 𝑏 ) ) |
| 45 |
44
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) = ( 𝑀 · 𝑏 ) ) |
| 46 |
29 45
|
sylan9eqr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → 𝐵 = ( 𝑀 · 𝑏 ) ) |
| 47 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 48 |
47
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 50 |
12
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝑎 ∈ ℂ ) |
| 51 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐴 ∈ ℤ ) |
| 52 |
1
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐵 ∈ ℤ ) |
| 53 |
51 52
|
gcdcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 54 |
53
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 55 |
54
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 56 |
|
gcdeq0 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 57 |
|
simpr |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
| 58 |
56 57
|
biimtrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 0 → 𝐵 = 0 ) ) |
| 59 |
58
|
necon3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≠ 0 → ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) |
| 60 |
59
|
impr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 61 |
60
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 62 |
61
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 63 |
49 50 55 62
|
divmul3d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ↔ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 64 |
63
|
bicomd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ) ) |
| 65 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 67 |
66
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → 𝐵 ∈ ℂ ) |
| 68 |
67
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 69 |
36
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℂ ) |
| 70 |
68 69 55 62
|
divmul3d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ↔ 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 71 |
2
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 72 |
|
gcdcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
| 73 |
71 72
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
| 74 |
73
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
| 75 |
74
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) |
| 76 |
75
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐵 = ( 𝑏 · ( 𝐴 gcd 𝐵 ) ) ↔ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) |
| 77 |
70 76
|
bitr2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) ) |
| 78 |
64 77
|
anbi12d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ↔ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) ) ) |
| 79 |
|
3anass |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ↔ ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) ) |
| 80 |
79
|
biimpri |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) |
| 81 |
80
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) |
| 82 |
|
divgcdcoprm0 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
| 83 |
81 82
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
| 84 |
|
oveq12 |
⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = ( 𝑎 gcd 𝑏 ) ) |
| 85 |
84
|
eqeq1d |
⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ↔ ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 86 |
83 85
|
syl5ibcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 87 |
86
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = 𝑎 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = 𝑏 ) → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 88 |
78 87
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 89 |
88
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝑎 gcd 𝑏 ) = 1 ) |
| 90 |
28 46 89
|
3jca |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) ∧ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) |
| 91 |
90
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ℤ ) → ( ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
| 92 |
91
|
reximdva |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) ∧ 𝑎 ∈ ℤ ) → ( ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
| 93 |
92
|
reximdva |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
| 94 |
10 93
|
biimtrrid |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ( ( ∃ 𝑎 ∈ ℤ 𝐴 = ( 𝑎 · ( 𝐴 gcd 𝐵 ) ) ∧ ∃ 𝑏 ∈ ℤ 𝐵 = ( 𝑏 · ( 𝐵 gcd 𝐴 ) ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) ) |
| 95 |
5 9 94
|
mp2and |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ∧ 𝑀 = ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( 𝐴 = ( 𝑀 · 𝑎 ) ∧ 𝐵 = ( 𝑀 · 𝑏 ) ∧ ( 𝑎 gcd 𝑏 ) = 1 ) ) |