| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnz | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℤ ) | 
						
							| 2 | 1 | anim1i | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ ) ) | 
						
							| 3 |  | gcddvds | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) ) | 
						
							| 4 | 3 | simpld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  𝐵 )  ∥  𝐴 ) | 
						
							| 5 | 2 4 | syl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  𝐵 )  ∥  𝐴 ) | 
						
							| 6 |  | nnne0 | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ≠  0 ) | 
						
							| 7 | 6 | neneqd | ⊢ ( 𝐴  ∈  ℕ  →  ¬  𝐴  =  0 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℤ )  →  ¬  𝐴  =  0 ) | 
						
							| 9 | 8 | intnanrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℤ )  →  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) | 
						
							| 10 |  | gcdn0cl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ ) | 
						
							| 11 | 2 9 10 | syl2anc | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ ) | 
						
							| 12 |  | nndivdvds | ⊢ ( ( 𝐴  ∈  ℕ  ∧  ( 𝐴  gcd  𝐵 )  ∈  ℕ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ↔  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ ) ) | 
						
							| 13 | 11 12 | syldan | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ↔  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ ) ) | 
						
							| 14 | 5 13 | mpbid | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ ) |